OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 11 — Nov. 1, 2011
  • pp: 2735–2739

Effects of surface oxidation on the linear optical properties of Cu nanoparticles

Ovidio Peña-Rodríguez and Umapada Pal  »View Author Affiliations

JOSA B, Vol. 28, Issue 11, pp. 2735-2739 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (683 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Applications of copper nanoparticles (NPs) are restricted due to their proneness to oxidation by ambient oxygen if not properly protected. Here we discuss the optical properties and application potential of copper NPs covered by a thin oxide layer. Considering Cu @ Cu 2 O core–shell type structures with different core size and shell thicknesses, linear optical properties of surface-oxidized copper NPs have been studied theoretically. Contrary to common perception, it has been demonstrated that surface-oxidized copper NPs have certain advantages for plasmonic applications. While the position of the surface plasmon resonance (SPR) can be fine-tuned by varying the thickness of the oxide layer, their plasmonic response can be enhanced (SPR intensity gain up to 30%) by adjusting the thickness of the oxide layer.

© 2011 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(160.4760) Materials : Optical properties
(240.6680) Optics at surfaces : Surface plasmons
(160.4236) Materials : Nanomaterials
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:

Original Manuscript: June 17, 2011
Revised Manuscript: September 12, 2011
Manuscript Accepted: September 22, 2011
Published: October 24, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Ovidio Peña-Rodríguez and Umapada Pal, "Effects of surface oxidation on the linear optical properties of Cu nanoparticles," J. Opt. Soc. Am. B 28, 2735-2739 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef] [PubMed]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications, 1st ed. (Springer, 2007).
  3. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems,” Plasmonics 2, 107–118 (2007). [CrossRef]
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010). [CrossRef] [PubMed]
  5. Y. Lei and W.-K. Chim, “Highly ordered arrays of metal/semiconductor core-shell nanoparticles with tunable nanostructures and photoluminescence,” J. Am. Chem. Soc. 127, 1487–1492 (2005). [CrossRef] [PubMed]
  6. T. Ghodselahi, M. A. Vesaghi, and A. Shafiekhani, “Study of surface plasmon resonance of Cu@Cu2O core–shell nanoparticles by Mie theory,” J. Phys. D 42, 015308 (2009). [CrossRef]
  7. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003). [CrossRef] [PubMed]
  8. J. Z. Zhang, “Biomedical applications of shape-controlled plasmonic nanostructures: a case study of hollow gold nanospheres for photothermal ablation therapy of cancer,” J. Phys. Chem. Lett. 1, 686–695 (2010). [CrossRef]
  9. Z. Ai, L. Zhang, S. Lee, and W. Ho, “Interfacial hydrothermal synthesis of Cu@Cu2O core-shell microspheres with enhanced visible-light-driven photocatalytic activity,” J. Phys. Chem. C 113, 20896–20902 (2009). [CrossRef]
  10. S. B. Kalidindi, U. Sanyal, and B. R. Jagirdar, “Nanostructured Cu and Cu@Cu2O core shell catalysts for hydrogen generation from ammonia–borane,” Phys. Chem. Chem. Phys. 10, 5870–5874 (2008). [CrossRef] [PubMed]
  11. G. Baffou, R. Quidant, and C. Girard, “Heat generation in plasmonic nanostructures: influence of morphology,” Appl. Phys. Lett. 94, 153109 (2009). [CrossRef]
  12. S. D. Hudson and G. Chumanov, “Surface enhanced Raman scattering and resonance elastic scattering from capped single Ag nanoparticles,” J. Phys. Chem. C 112, 19866–19871 (2008). [CrossRef]
  13. L. Gao and X. P. Yu, “Second- and third-harmonic generations for a nondilute suspension of coated particles with radial dielectric anisotropy,” Eur. Phys. J. B 55, 403–409 (2007). [CrossRef]
  14. P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol. 22, 47–52 (2004). [CrossRef] [PubMed]
  15. Z. Jian, Z. Jun-Wu, and L. Jian-Jun, “Location-dependent local field enhancement along the surface of the metal–dielectric core–shell nanostructure,” Plasmonics 5, 311–318 (2010). [CrossRef]
  16. J. Zhu, “Enhanced fluorescence from Dy3+ owing to surface plasmon resonance of Au colloid nanoparticles,” Mater. Lett. 59, 1413–1416 (2005). [CrossRef]
  17. N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, “Third-order nonlinear optical response of Au:SiO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters,” Eur. Phys. J. D 19, 395–402 (2002). [CrossRef]
  18. Q.-Q. Wang, J.-B. Han, D.-L. Guo, S. Xiao, Y.-B. Han, H.-M. Gong, and X.-W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7, 723–728 (2007). [CrossRef] [PubMed]
  19. L. Gao, L. Gu, and Z. Li, “Optical bistability and tristability in nonlinear metal/dielectric composite media of nonspherical particles,” Phys. Rev. E 68, 066601 (2003). [CrossRef]
  20. Y. Liu, Y. Chu, Y. Zhuo, L. Dong, L. Li, and M. Li, “Controlled synthesis of various hollow Cu nano/microstructures via a novel reduction route,” Adv. Funct. Mater. 17, 933–938 (2007). [CrossRef]
  21. J. R. Hayes, G. W. Nyce, J. D. Kuntz, J. H. Satcher, and A. V. Hamza, “Synthesis of bi-modal nanoporous Cu, CuO and Cu2O monoliths with tailored porosity,” Nanotechnology 18, 275602 (2007). [CrossRef]
  22. C. Sönnichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5, 301–304 (2005). [CrossRef] [PubMed]
  23. G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004). [CrossRef]
  24. A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003). [CrossRef]
  25. H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in Silver nanoaggregates,” Phys. Rev. Lett. 89, 246802 (2002). [CrossRef] [PubMed]
  26. M. Yin, C.-K. Wu, Y. Lou, C. Burda, J. T. Koberstein, Y. Zhu, and S. O’Brien, “Copper oxide nanocrystals,” J. Am. Chem. Soc. 127, 9506–9511 (2005). [CrossRef] [PubMed]
  27. K. P. Rice, E. J. Walker, M. P. Stoykovich, and A. E. Saunders, “Solvent-dependent surface plasmon response and oxidation of copper nanocrystals,” J. Phys. Chem. C 115, 1793–1799(2011). [CrossRef]
  28. S. J. Pearton, C. R. Abernathy, M. E. Overberg, G. T. Thaler, D. P. Norton, N. Theodoropoulou, A. F. Hebard, Y. D. Park, F. Ren, J. Kim, and L. A. Boatner, “Wide band gap ferromagnetic semiconductors and oxides,” J. Appl. Phys. 93, 1–13 (2003). [CrossRef]
  29. G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7, 1947–1952(2007). [CrossRef]
  30. L.-Y. Shao, J. P. Coyle, S. T. Barry, and J. Albert, “Anomalous permittivity and plasmon resonances of copper nanoparticle conformal coatings on optical fibers,” Opt. Mater. Express 1, 128–137 (2011). [CrossRef]
  31. D.-K. Kim, S. M. Yoo, T. J. Park, H. Yoshikawa, E. Tamiya, J. Y. Park, and S. Y. Lee, “Plasmonic properties of the multispot copper-capped nanoparticle array chip and its application to optical biosensors for pathogen detection of multiplex DNAs,” Anal. Chem. 83, 6215–6222 (2011). [CrossRef] [PubMed]
  32. G. Mie, “Beiträge zur Optik trüber medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908). [CrossRef]
  33. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1998). [CrossRef]
  34. O. Peña and U. Pal, “Scattering of electromagnetic radiation by a multilayered sphere,” Comput. Phys. Commun. 180, 2348–2354(2009). [CrossRef]
  35. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  36. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824–1832(1999). [CrossRef]
  37. O. Peña, U. Pal, L. Rodríguez-Fernández, and A. Crespo-Sosa, “Linear optical response of metallic nanoshells in different dielectric media,” J. Opt. Soc. Am. B 25, 1371–1379 (2008). [CrossRef]
  38. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1997).
  39. W. Yang, “Improved recursive algorithm for light scattering by a multilayered sphere,” Appl. Opt. 42, 1710–1720 (2003). [CrossRef] [PubMed]
  40. A. E. Neeves and M. H. Birnboim, “Composite structures for the enhancement of nonlinear-optical susceptibility,” J. Opt. Soc. Am. B 6, 787–796 (1989). [CrossRef]
  41. H. Wang, F. Tam, N. K. Grady, and N. J. Halas, “Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance,” J. Phys. Chem. B 109, 18218–18222 (2005). [CrossRef]
  42. Z. Liu and Y. Bando, “A novel method for preparing copper nanorods and nanowires,” Adv. Mater. 15, 303–305 (2003). [CrossRef]
  43. L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038(2005). [CrossRef] [PubMed]
  44. O. Peña-Rodríguez, U. Pal, V. Rodríguez-Iglesias, L. Rodríguez-Fernández, and A. Oliver, “Configuring Au and Ag nanorods for sensing applications,” J. Opt. Soc. Am. B 28, 714–720 (2011). [CrossRef]
  45. N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon–exciton coupling in nanoshell–J-aggregate complexes,” Nano Lett. 8, 3481–3487 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited