OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 11 — Nov. 1, 2011
  • pp: 2777–2784

Interplay between Raman scattering and four-wave mixing in As 2 S 3 chalcogenide glass waveguides

Xin Gai, Duk-Yong Choi, Steve Madden, and Barry Luther-Davies  »View Author Affiliations


JOSA B, Vol. 28, Issue 11, pp. 2777-2784 (2011)
http://dx.doi.org/10.1364/JOSAB.28.002777


View Full Text Article

Enhanced HTML    Acrobat PDF (530 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have studied parametric amplification in dispersion-engineered As 2 S 3 waveguides achieving a highest gain of over + 35 dB using a pulsed pump. The gain is shown to involve an interaction between stimulated Raman scattering (SRS) and four-wave mixing (FWM). The gain was studied both experimentally and using computer modeling, which revealed that SRS contributes over + 20 dB to the combined gain and significantly modifies the dependence of the FWM the conversion efficiency as a function of propagation distance and dispersion. The implications for FWM using low-power CW beams are discussed.

© 2011 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5650) Nonlinear optics : Raman effect
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 21, 2011
Revised Manuscript: August 23, 2011
Manuscript Accepted: August 23, 2011
Published: October 26, 2011

Citation
Xin Gai, Duk-Yong Choi, Steve Madden, and Barry Luther-Davies, "Interplay between Raman scattering and four-wave mixing in As2S3 chalcogenide glass waveguides," J. Opt. Soc. Am. B 28, 2777-2784 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-11-2777


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/sdemultiplexing,” Opt. Express 17, 2182–2187 (2009). [CrossRef] [PubMed]
  2. T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18, 17252–17261 (2010). [CrossRef] [PubMed]
  3. F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17, 3514–3520 (2009). [CrossRef] [PubMed]
  4. S. J. Madden, D-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15, 14414–14421 (2007). [CrossRef] [PubMed]
  5. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photon. 3, 139–143 (2009). [CrossRef]
  6. M. D. Pelusi, F. Luan, D.-Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express 18, 26686–26694 (2010). [CrossRef] [PubMed]
  7. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374–20381(2008). [CrossRef] [PubMed]
  8. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ=10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008). [CrossRef] [PubMed]
  9. X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W−1 m−1 at 1550 nm,” Opt. Express 18, 18866–18874 (2010). [CrossRef] [PubMed]
  10. K. A. Cerqua-Richardson, J. M. McKinley, B. Lawrence, S. Joshi, and A. Villeneuve, “Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form,” Opt. Mater. 10, 155–159 (1998). [CrossRef]
  11. T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, “Non-linear optical properties of chalcogenide glasses in the system As–S–Se,” J. Non-Cryst. Solids 256–257, 353–360 (1999). [CrossRef]
  12. L. Petit, N. Carlie, K. Richardson, A. Humeau, S. Cherukulappurath, and G. Boudebs, “Nonlinear optical properties of glasses in the system Ge/Ga–Sb–S/Se,” Opt. Lett. 31, 1495–1497 (2006). [CrossRef] [PubMed]
  13. A. Prasad, C. Zha, R-P Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16, 2804–2815(2008). [CrossRef] [PubMed]
  14. P. Liisse, P. Stuwe, J. Schiile, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12, 487–492 (1994). [CrossRef]
  15. D.-Y. Choi, S. Maden, A. Rode, R. Wang, and B. Luther-Davies, “Plasma etching of As2S3 films for optical waveguides,” J. Non-Cryst. Solids 354, 3179–3183 (2008). [CrossRef]
  16. X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18, 26635–26646 (2010). [CrossRef] [PubMed]
  17. Y. J. Jiang, L. Z. Zeng, R. P. Wang, Y. Zhu, and Y. L. Liu, “Fundamental and second-order Raman spectra of BaTiO3,” J. Raman Spectrosc. 27, 31–34 (1996). [CrossRef]
  18. A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of Raman and parametric gain on single-pump parametric amplifiers,” Opt. Express 15, 8104–8114 (2007). [CrossRef] [PubMed]
  19. G. P. Agrawal, Nonlinear Fiber Optics, Optics and Photonics Series (Academic, 2001).
  20. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14, 4786–4799 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited