OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 11 — Nov. 1, 2011
  • pp: 2797–2805

Reduction of background signals in fiber-based NICE-OHMS

Aleksandra Foltynowicz, Isak Silander, and Ove Axner  »View Author Affiliations


JOSA B, Vol. 28, Issue 11, pp. 2797-2805 (2011)
http://dx.doi.org/10.1364/JOSAB.28.002797


View Full Text Article

Enhanced HTML    Acrobat PDF (1055 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) based on a fiber-coupled electro-optic modulator (EOM) provides a compact and versatile experimental setup. It has, however, been limited by background signals originating from an imbalance of the phase modulated triplet created by a cross-coupling between the principal axes of the polarization maintaining fibers and the extraordinary axis of the EOM. Two strategies for reducing these background signals are investigated: (i) using an EOM with a titanium diffused waveguide, in which the balance of the triplet is controlled by active feedback, and (ii) using an EOM with a proton exchanged waveguide that does not support light propagation along the ordinary axis. It is shown that both approaches significantly reduce drifts and noise in the system. Using a cavity with a finesse of 5700, an absorption sensitivity of 3.2 × 10 12 cm 1 in 1 min of integration time (i.e., 1.8 × 10 11 cm 1 Hz 1 / 2 ) is demonstrated for Doppler-broadened detection, the lowest reported so far for Doppler-broadened NICE-OHMS. For sub- Doppler detection, a minimum detectable optical phase shift of 1.3 × 10 12 cm 1 in 400 s of integration time is obtained.

© 2011 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3510) Lasers and laser optics : Lasers, fiber
(300.1030) Spectroscopy : Absorption
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(300.6380) Spectroscopy : Spectroscopy, modulation

ToC Category:
Spectroscopy

History
Original Manuscript: June 22, 2011
Manuscript Accepted: August 28, 2011
Published: October 27, 2011

Citation
Aleksandra Foltynowicz, Isak Silander, and Ove Axner, "Reduction of background signals in fiber-based NICE-OHMS," J. Opt. Soc. Am. B 28, 2797-2805 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-11-2797


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998). [CrossRef]
  2. L. Gianfrani, R. W. Fox, and L. Hollberg, “Cavity-enhanced absorption spectroscopy of molecular oxygen,” J. Opt. Soc. Am. B 16, 2247–2254 (1999). [CrossRef]
  3. N. J. van Leeuwen and A. C. Wilson, “Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” J. Opt. Soc. Am. B 21, 1713–1721 (2004). [CrossRef]
  4. J. Bood, A. McIlroy, and D. L. Osborn, “Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy,” J. Chem. Phys. 124, 084311 (2006). [CrossRef] [PubMed]
  5. C. L. Bell, G. Hancock, R. Peverall, G. A. D. Ritchie, J. H. van Helden, and N. J. van Leeuwen, “Characterization of an external cavity diode laser based ring cavity NICE-OHMS system,” Opt. Express 17, 9834–9839 (2009). [CrossRef] [PubMed]
  6. A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B 92, 313–326 (2008). [CrossRef]
  7. L. S. Ma, J. Ye, P. Dube, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255–2268(1999). [CrossRef]
  8. F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range,” J. Opt. Soc. Am. B 24, 1392–1405 (2007). [CrossRef]
  9. F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, and O. Axner, “Doppler-broadened fiber-laser-based NICE-OHMS—improved detectability,” Opt. Express 15, 10822–10831 (2007). [CrossRef] [PubMed]
  10. A. Foltynowicz, W. Ma, and O. Axner, “Characterization of fiber-laser-based sub-Doppler NICE-OHMS for trace gas detection,” Opt. Express 16, 14689–14702 (2008). [CrossRef] [PubMed]
  11. I. Silander, P. Ehlers, J. Wang, and O. Axner, Department of Physics, Umeå University, SE-901 87 Umeå, Sweden, are preparing a manuscript to be called, “Frequency modulation background signals from fiber-based electro optic modulators are caused by crosstalk.” Available from ove.axner@physics.umu.se.
  12. N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B 2, 1527–1533(1985). [CrossRef]
  13. T. L. Koch, F. J. Leonberger, and P. G. Suchoski, “Integrated optics,” in Handbook of Optics, Vol. 1—Geometrical and Physical Optics, Polarized Light, Components and Instruments, 2nd ed., M.Bass, E.W.van Stryland, D.R.Williams, and W.L.Wolfe, eds. (McGraw-Hill, 1995), 21.16–21.17.
  14. A. C. G. Nutt, “Experimental observations of light propagation in proton-exchanged lithium niobate waveguides,” J. Opt. Commun. 6, 8–9 (1985). [CrossRef]
  15. E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2, 1320–1326 (1985). [CrossRef]
  16. M. V. Hobden and J. Warner, “Temperature dependence of refractive indices of pure lithium niobate,” Phys. Lett. 22, 243–244 (1966). [CrossRef]
  17. A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Wavelength-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signal line shapes in the Doppler limit,” J. Opt. Soc. Am. B 26, 1384–1394 (2009). [CrossRef]
  18. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  19. R. G. DeVoe and R. G. Brewer, “Laser frequency division and stabilization,” Phys. Rev. A 30, 2827–2829 (1984). [CrossRef]
  20. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009). [CrossRef]
  21. A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signals from optically saturated transitions under low pressure conditions,” J. Opt. Soc. Am. B 25, 1156–1165 (2008). [CrossRef]
  22. J. Westberg, P. Kluczynski, S. Lundqvist, and O. Axner, “Analytical expression for the nth Fourier coefficient of a modulated Lorentzian dispersion lineshape function,” J. Quant. Spectrosc. Radiat. Transfer 112, 1443–1449 (2011). [CrossRef]
  23. O. Axner, W. Ma, and A. Foltynowicz, “Sub-Doppler dispersion and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy revised,” J. Opt. Soc. Am. B 25, 1166–1177(2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited