OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 11 — Nov. 1, 2011
  • pp: 2820–2826

Analytical theory of optical bistability in plasmonic nanoresonators

Asanka Pannipitiya, Ivan D. Rukhlenko, and Malin Premaratne  »View Author Affiliations

JOSA B, Vol. 28, Issue 11, pp. 2820-2826 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (527 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present approximate analytical expressions describing the optical bistability phenomenon in a plasmonic-gap-waveguide-based nonlinear device. The device is formed by a metal–dielectric–metal (MDM) waveguide perpendicularly coupled to a stub structure that is filled with an optically nonlinear medium. Among the recently reported studies on nonlinearity-induced bistability in plasmonic nanostructures, our work stands out because of its pure analytic approach and the considered device geometry. The scattered-field technique that we employ here is hinged on the concepts of circuit theory and the characteristic-impedance model for single-mode MDM waveguides. By properly accounting for surface-plasmon damping, multiple reflections, and the Kerr effect, we obtain a fairly accurate parametric relation connecting the input and output intensities of the device. The impact of changing the operating wavelength and geometrical parameters of the stub on the bistable switching thresholds and the hysteresis loop width is demonstrated using a number of numerical examples. The derived relation is useful for rapid design optimization of plasmonic switches and memories.

© 2011 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(230.4320) Optical devices : Nonlinear optical devices
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics
(250.6715) Optoelectronics : Switching

ToC Category:
Optics at Surfaces

Original Manuscript: August 2, 2011
Manuscript Accepted: September 27, 2011
Published: October 31, 2011

Asanka Pannipitiya, Ivan D. Rukhlenko, and Malin Premaratne, "Analytical theory of optical bistability in plasmonic nanoresonators," J. Opt. Soc. Am. B 28, 2820-2826 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010). [CrossRef]
  2. N. J. Halas, “Connecting the dots: reinventing optics for nanoscale dimensions,” Proc. Natl. Acad. Sci. USA 106, 3643–3644(2009). [CrossRef] [PubMed]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  4. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  5. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1, 641–648 (2007). [CrossRef]
  6. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413–422 (2005). [CrossRef]
  7. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef] [PubMed]
  8. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61, 44–50 (2008). [CrossRef]
  9. M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010). [CrossRef] [PubMed]
  10. D. Handapangoda, M. Premaratne, I. D. Rukhlenko, and C. Jagadish, “Optimal design of composite nanowires for extended reach of surface plasmon-polaritons,” Opt. Express 19, 16058–16074 (2011). [CrossRef] [PubMed]
  11. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  12. R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic couplers and splitters,” Opt. Express 17, 19033–19040 (2009). [CrossRef]
  13. A. A. Reiserer, J.-S. Huang, B. Hecht, and T. Brixner, “Subwavelength broadband splitters and switches for femtosecond plasmonic signals,” Opt. Express 18, 11810–11820 (2010). [CrossRef] [PubMed]
  14. L. Dobrzynski, A. Akjouj, B. Djafari-Rouhani, J. O. Vasseur, M. Bouazaoui, J. P. Vilcot, H. A. Wahsh, P. Zielinski, and J. P. Vigneron, “Simple nanometric plasmon multiplexer,” Phys. Rev. E 69, 035601 (2004). [CrossRef]
  15. A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, and U. Welp, “Multiplexing surface plasmon polaritons on nanowires,” Appl. Phys. Lett. 91, 083115 (2007). [CrossRef]
  16. X. Lin and X. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33, 2874–2876 (2008). [CrossRef] [PubMed]
  17. X. Lin and X. Huang, “Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter,” J. Opt. Soc. Am. B 26, 1263–1268 (2009). [CrossRef]
  18. J. Tao, X. Huang, X. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17, 13989–13994(2009). [CrossRef] [PubMed]
  19. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express 18, 6191–6204 (2010). [CrossRef] [PubMed]
  20. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008). [CrossRef] [PubMed]
  21. Y. Gong, L. Wang, X. Hu, X. Li, and X. Liu, “Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide,” Opt. Express 17, 13727–13736(2009). [CrossRef] [PubMed]
  22. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004). [CrossRef] [PubMed]
  23. Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach–Zehnder interferometers based on surface plasmon polariton,” Opt. Commun. 259, 690–695 (2006). [CrossRef]
  24. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005). [CrossRef] [PubMed]
  25. H. Kim, J. Hahn, and B. Lee, “Focusing properties of surface plasmon polariton floating dielectric lenses,” Opt. Express 16, 3049–3057 (2008). [CrossRef] [PubMed]
  26. M. U. González, A. L. Stepanov, J. C. Weeber, A. Hohenau, A. Dereux, R. Quidant, and J. R. Krenn, “Analysis of the angular acceptance of surface plasmon Bragg mirrors,” Opt. Lett. 32, 2704–2706 (2007). [CrossRef] [PubMed]
  27. S. Randhawa, M. U. González, J. Renger, S. Enoch, and R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express 18, 14496–14510 (2010). [CrossRef] [PubMed]
  28. M. Premaratne and G. P. Agrawal, Light Propagation in Gain Media (Cambridge University Press, 2011).
  29. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006). [CrossRef]
  30. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008). [CrossRef] [PubMed]
  31. P. Neutens, P. V. Dorpe, I. D. Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photon. 3, 283–286(2009). [CrossRef]
  32. C. Min, P. Wang, C. Chen, Y. Deng, Y. Lu, H. Ming, T. Ning, Y. Zhou, and G. Yang, “All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33, 869–871 (2008). [CrossRef] [PubMed]
  33. C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17, 10757–10766(2009). [CrossRef] [PubMed]
  34. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal–oxide–Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009). [CrossRef] [PubMed]
  35. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9, 4403–4411 (2009). [CrossRef] [PubMed]
  36. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407(2006). [CrossRef]
  37. F. I. Baida, A. Belkhir, D. V. Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006). [CrossRef]
  38. Z.-J. Zhong, Y. Xu, S. Lan, Q.-F. Dai, and L.-J. Wu, “Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media,” Opt. Express 18, 79–86 (2010). [CrossRef] [PubMed]
  39. X.-S. Lin, J.-H. Yan, Y.-B. Zheng, L.-J. Wu, and S. Lan, “Bistable switching in the lossy side-coupled plasmonic waveguide-cavity structures,” Opt. Express 19, 9594–9599 (2011). [CrossRef] [PubMed]
  40. H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, “Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator,” Opt. Express 19, 2910–2915 (2011). [CrossRef] [PubMed]
  41. H. Lu, X. Liu, Y. Gong, D. Mao, and L. Wang, “Optical bistability in metal-insulator-metal plasmonic Bragg waveguides with Kerr nonlinear defects,” Appl. Opt. 50, 1307–1311 (2011). [CrossRef] [PubMed]
  42. Y. Shen and G. P. Wang, “Optical bistability in metal gap waveguide nanocavities,” Opt. Express 16, 8421–8426 (2008). [CrossRef] [PubMed]
  43. G. Veronis, S. E. Kocabaş, D. A. B. Miller, and S. Fan, “Modeling of plasmonic waveguide components and networks,” J. Comput. Theor. Nanosci. 6, 1808–1826 (2009). [CrossRef]
  44. A. Pannipitiya, I. D. Rukhlenko, and M. Premaratne, “Analytical modeling of resonant cavities for plasmonic-slot-waveguide junctions,” IEEE J. Photon. 3, 220–233 (2011). [CrossRef]
  45. P. A. Rizzi, Microwave Engineering: Passive Circuits (Prentice-Hall, 1988).
  46. S. Ramo, J. R. Whinnery, and T. V. Duzer, Fields and Waves in Communication Electronics, 3rd ed. (Wiley, 1994).
  47. D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, 1998).
  48. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005). [CrossRef] [PubMed]
  49. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007). [CrossRef]
  50. R. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).
  51. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  52. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Analytical study of optical bistability in silicon ring resonators,” Opt. Lett. 35, 55–57 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited