OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 11 — Nov. 1, 2011
  • pp: 2833–2843

Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material

Shui Liu, Michael R. Gleeson, Jinxin Guo, John T. Sheridan, Elen Tolstik, Vladislav Matusevich, and Richard Kowarschik  »View Author Affiliations


JOSA B, Vol. 28, Issue 11, pp. 2833-2843 (2011)
http://dx.doi.org/10.1364/JOSAB.28.002833


View Full Text Article

Enhanced HTML    Acrobat PDF (747 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Phenanthrenequinone (PQ) doped poly(methyl methacrylate) (PMMA) photopolymer material is receiving ever greater attention in the literature due to its attractive properties for applications such as holographic data storage, hybrid optoelectronics, solar concentrators, self-trapping of light, and diffractive optical elements. PQ/PMMA photopolymer material can be used to produce three-dimensional low loss, low shrinkage recordings that are environmentally stable, have high contrast refractive index variations, and can produce high-optical-quality devices. However, in any attempt to further develop the potential of such materials, a more physical and accurate theoretical model has become ever more necessary and important. In this paper, based on a detailed analysis of the photochemical mechanisms present in PQ/PMMA photopolymer during holographic grating formation, a set of rate equations are derived governing the temporal and spatial variations of each associated chemical species concentration. Experimental results are presented, which are then fit using this model. In this way, values for several kinetic parameters are estimated and their significance is discussed.

© 2011 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(090.2900) Holography : Optical storage materials
(090.7330) Holography : Volume gratings
(160.5470) Materials : Polymers
(300.1030) Spectroscopy : Absorption
(160.5335) Materials : Photosensitive materials

ToC Category:
Holography

History
Original Manuscript: May 5, 2011
Revised Manuscript: July 27, 2011
Manuscript Accepted: September 5, 2011
Published: October 31, 2011

Citation
Shui Liu, Michael R. Gleeson, Jinxin Guo, John T. Sheridan, Elen Tolstik, Vladislav Matusevich, and Richard Kowarschik, "Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material," J. Opt. Soc. Am. B 28, 2833-2843 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-11-2833


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik 112, 449-463 (2001). [CrossRef]
  2. M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling,” J. Opt. Soc. Am. B 26, 1736-1745 (2009). [CrossRef]
  3. M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746-1754 (2009). [CrossRef]
  4. M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part III. Primary radical generation and inhibition,” J. Opt. Soc. Am. B 27, 1804-1812 (2010). [CrossRef]
  5. D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer,” J. Appl. Phys. 107, 053113 (2010). [CrossRef]
  6. U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82, 299-302(2006). [CrossRef]
  7. U. V. Mahilny, D. N. Marmysh, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Phase hologram formation in highly concentrated phenanthrenequinone-PMMA media,” J. Opt. A-Pure Appl. Opt. 10, 085302 (2008). [CrossRef]
  8. L. P. Krul, V. Matusevich, D. Hoff, R. Kowarschik, Yu. I. Matusevich, G. V. Butovskaya, and E. A. Murashko, “Modified polymethylmethacrylate as a base for thermostable optical recording media,” Opt. Express 15, 8543-8549 (2007). [CrossRef] [PubMed]
  9. Y. N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials,” Opt. Eng. 43, 1993-2002 (2004). [CrossRef]
  10. S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25, 451-453 (2000). [CrossRef]
  11. S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: Theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559-569 (2010). [CrossRef]
  12. V. L. Vyazovkin, V. V. Korolev, V. M. Syutkin, and V. A. Tolkatchev, “On oxygen diffusion in poly(methyl methacrylate) films,” Reaction kinetics and catalysis letters Soobshcheniia po kinetike i katalizu 77, 293-299 (2002). [CrossRef]
  13. S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528-536 (2009). [CrossRef]
  14. S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009). [CrossRef]
  15. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108-1114 (2000). [CrossRef]
  16. G. J. Steckman, V. Shelkovnikov, V. Brerzhnaya, T. Gerasimova, I. Solomatine, and D. Psaltis, “Holographic recording in a photopolymer by optically induced detachment of chromophores,” Opt. Lett. 25, 607-609 (2000). [CrossRef]
  17. J. Wang, X. D. Sun, S. H. Luo, Y. Y. Jiang, and Q. X. Meng, “Photochemical kinetics for holographic grating formation in phenanthrenequinone doped poly (methyl methacrylate) photopolymer,” Chin. Phys. B 18, 4327-4332 (2009).
  18. A. Faldi, M. Tirrell, and T. P. Lodge, “Comparisons between polymer diffusion and chain radical termination kinetics: The importance of polydispersity,” Macromolecules 27, 4176-4183 (1994). [CrossRef]
  19. A. Faldi, M. Tirrell, T. P. Lodge, and E. V. Meerwall, “Monomer diffusion and the kinetics of methyl methacrylate radical polymerization at intermediate to high conversion,” Macromolecules 27, 4184-4192 (1994). [CrossRef]
  20. V. Matusevich, A. Matusevich, R. Kowarschik, and L. P. Krul, “Holographic volume absorption grating in glass-like polymer recording material,” Opt. Express 161552-1558 (2008). [CrossRef] [PubMed]
  21. S. Liu, M. R. Gleeson, J. Guo, and John T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462-9472 (2010). [CrossRef]
  22. A. V. Veniaminov and Yu. N. Sedunov, “Diffusion of phenanthrenequinone in poly (methyl methacrylate): Holographic measurements,” Polym. Sci. Ser. A 38, 59-63 (1996).
  23. A. V. Veniaminov, E. Bartsch, and A. P. Popov, “Postexposure evolution of a photoinduced grating in a polymer material with phenanthrenequinone,” Opt. Spectrosc. 99, 744-750 (2005). [CrossRef]
  24. A. V. Veniaminov and E. Bartsch, “The shape of the relaxation curve in diffusion measurements with the aid of photoinduced gratings,” Opt. Spectrosc. 101, 290-298 (2006). [CrossRef]
  25. T. L. Tsai, C. C. Lin, G. L. Guo, and T. C. Chu, “Chemical kinetics of polymethyl methacrylate (PMMA) decomposition assessed by a microwave-assisted digestion system,” Ind. Eng. Chem. Res. 47, 2554-2560 (2008). [CrossRef]
  26. H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95, 513-518 (2009). [CrossRef]
  27. M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396-406 (2008). [CrossRef]
  28. E. Tolstik, O. Kashin, A. Matusevich, V. Matusevich, R. Kowarschik, Yu. I. Matusevich, and L. P. Krul, “Nonlocal response in glass-like polymer storage materials based on poly (methylmethacrylate) with distributed phenanthrenequinone,” Opt. Express 16, 11253-11258 (2008). [CrossRef] [PubMed]
  29. G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23, 1310-1312 (1998). [CrossRef]
  30. J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials,” Opt. Commun. 194, 103-108 (2001). [CrossRef]
  31. N. J. Turro, Modern Molecular Chemistry (University Science, 1991), p. 103.
  32. S. Blaya, P. Acebal, L. Carretero, A. Murciano, R. F. Madrigal, and A. Fimia, “An explanation for the non-uniform grating effects during recording of diffraction gratings in photopolymers,” Opt. Express 18, 799-808 (2010). [CrossRef] [PubMed]
  33. M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40-1000 μm thick layers,” Phys. Scr. T118, 66-68 (2005). [CrossRef]
  34. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006). [CrossRef]
  35. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2945 (1969).
  36. I. Aubrechta, M. Milera, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465-1477 (1998). [CrossRef]
  37. D. H. Choi, D-J. Feng, H. Yoon, and S-H. Choi, “Diffraction gratings of photopolymers composed of polyvinylalcohol or polyvinylacetate binder,” Macro. Res. 11, 36-41 (2003). [CrossRef]
  38. A. V. Veniaminov and H. Sillescu, “Polymer and dye probe diffusion in poly(methyl methacrylate) below the glass transition studied by forced Rayleigh scattering,” Macromolecules 32, 1828-1837 (1999). [CrossRef]
  39. M. Russo, C. H. Chen, R. K. Kostuk, “Temperature dependence and characterization of gratings in PQ/PMMA holographic materials,” Proc. SPIE 6335, 633505 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited