OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 12 — Dec. 1, 2011
  • pp: 2856–2864

Modeling of optical traps for aerosols

Daniel R. Burnham and David McGloin  »View Author Affiliations


JOSA B, Vol. 28, Issue 12, pp. 2856-2864 (2011)
http://dx.doi.org/10.1364/JOSAB.28.002856


View Full Text Article

Enhanced HTML    Acrobat PDF (2167 KB) | SpotlightSpotlight on Optics Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Experimental observations suggest that there are differences between the behavior of particles optically trapped in air and trapped in a liquid phase. We have modified the Mie–Debye spherical aberration theory to numerically simulate an aerosol optical trap in an attempt to explain and predict the differences. The model incorporates Mie scattering and a trapping beam focused through media of stratified refractive index. We show that geometrical optics cannot correctly describe the aerosol optical trap and that spherical aberration must be included. We qualitatively explain the observed phenomena before discussing the limits of the experimental techniques and methods to improve it. We conclude that the system does not behave as a true “optical tweezers,” varying between levitation and single beam gradient force trapping, depending on particle and beam parameters.

© 2011 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Tweezing

History
Original Manuscript: June 17, 2011
Revised Manuscript: September 12, 2011
Manuscript Accepted: September 12, 2011
Published: November 11, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics
November 11, 2011 Spotlight on Optics

Citation
Daniel R. Burnham and David McGloin, "Modeling of optical traps for aerosols," J. Opt. Soc. Am. B 28, 2856-2864 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-12-2856


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. J. Lang, C. L. Asbury, J. W. Shaevitz, and S. M. Block, “An automated two dimensional optical force clamp for single molecule studies,” Biophys. J. 83, 491-501 (2002). [CrossRef] [PubMed]
  2. C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, and C. Bechinger, “Direct measurement of critical Casimir forces,” Nature 451, 172-175 (2008). [CrossRef] [PubMed]
  3. L. I. McCann, M. Dykman, and B. Golding, “Thermally activated transitions in a bistable three-dimensional optical trap,” Nature 402, 785-787 (1999). [CrossRef]
  4. D. McGloin, “Optical tweezers: 20 years on,” Phil. Trans. R. Soc. A 364, 3521-3537 (2006). [CrossRef] [PubMed]
  5. D. R. Burnham, P. J. Reece, and D. McGloin, “Parameter exploration of optically trapped liquid aerosols,” Phys. Rev. E 82, 051123 (2010). [CrossRef]
  6. D. R. Burnham, “Microscopic applications of holographic beam shaping and studies of optically trapped aerosols,” Ph.D. thesis (University of St. Andrews, 2009).
  7. L. Mitchem and J. P. Reid, “Optical manipulation and characterisation of aerosol particles using a single-beam gradient force optical trap,” Chem. Soc. Rev. 37, 756-769 (2008). [CrossRef] [PubMed]
  8. T. Li, S. Kheifets, D. Medellin, and M. G. Raizen, “Measurement of the instantaneous velocity of a Brownian particle,” Science 328, 1673-1675 (2010). [CrossRef] [PubMed]
  9. N.-O. A. Kwamena and J. P. Reid, “Aerosols,” in Colloid Science: Principles, Methods and Applications, T.Cosgrove, ed. (Wiley-Blackwell, 2005), Vol. 10, pp. 219-244.
  10. M. Z. Jacobson, Atmospheric Pollution: History, Science, and Regulation (Cambridge University, 2002).
  11. N. R. Labiris and M. B. Dolovich, “Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications,” Br. J. Clin. Pharmacol. 56, 588-599(2003). [CrossRef] [PubMed]
  12. P. F. Barker, “Doppler cooling a microsphere,” Phys. Rev. Lett. 105, 073002 (2010). [CrossRef] [PubMed]
  13. Y. Zhao, G. Milne, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Quantitative force mapping of an optical vortex trap,” Appl. Phys. Lett. 92, 161111 (2008). [CrossRef]
  14. N. K. Metzger, E. M. Wright, and K. Dholakia, “Theory and simulation of the bistable behaviour of optically bound particles in the Mie size regime,” New J. Phys. 8, 139 (2006). [CrossRef]
  15. G. Knoner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Measurement of the index of refraction of single microparticles,” Phys. Rev. Lett. 97, 157402 (2006). [CrossRef] [PubMed]
  16. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196-S203(2007). [CrossRef]
  17. N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezer,” Phys. Rev. E 75, 021914 (2007). [CrossRef]
  18. G. Roosen, “Theoretical and experimental-study of stable equilibrium positions of spheres levitated by 2 horizontal laser-beams,” Opt. Commun. 21, 189-194 (1977). [CrossRef]
  19. K. J. Knox, J. P. Reid, K. L. Hanford, A. J. Hudson, and L. Mitchem, “Direct measurements of the axial displacement and evolving size of optically trapped aerosol droplets,” J. Opt. A 9, S180-S188 (2007). [CrossRef]
  20. D. McGloin, D. R. Burnham, M. D. Summers, D. Rudd, N. Dewar, and S. Anand, “Optical manipulation of airborne particles: techniques and applications,” Faraday Discuss. Chem. Soc. 137, 335-350 (2008). [CrossRef]
  21. R. Di Leonardo, G. Ruocco, J. Leach, M. J. Padgett, A. J. Wright, J. M. Girkin, D. R. Burnham, and D. McGloin, “Parametric resonance of optically trapped aerosols,” Phys. Rev. Lett. 99, 010601 (2007). [CrossRef] [PubMed]
  22. R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924-4927 (2004). [CrossRef]
  23. D. R. Burnham and D. McGloin, “Holographic optical trapping of aerosol droplets,” Opt. Express 14, 4175-4181 (2006). [CrossRef] [PubMed]
  24. A. B. Stilgoe, T. A. Nieminen, G. Knoner, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “The effect of Mie resonances on trapping in optical tweezers,” Opt. Express 16, 15039-15051 (2008). [CrossRef] [PubMed]
  25. J. Joykutty, V. Mathur, V. Venkataraman, and V. Natarajan, “Direct measurement of the oscillation frequency in an optical-tweezers trap by parametric excitation,” Phys. Rev. Lett. 95, 193902 (2005). [CrossRef] [PubMed]
  26. S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A 9, S264-S266 (2007). [CrossRef]
  27. A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. A 459, 3021-3041 (2003). [CrossRef]
  28. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358-379 (1959). [CrossRef]
  29. P. Török and P. Varga, “Electromagnetic diffraction of light focused through a stratified medium,” Appl. Opt. 36, 2305-2312(1997). [CrossRef] [PubMed]
  30. G. Milne, K. Dholakia, D. McGloin, K. Volke-Sepulveda, and P. Zemanek, “Transverse particle dynamics in a Bessel beam,” Opt. Express 15, 13972-13987 (2007). [CrossRef] [PubMed]
  31. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1980).
  32. O. Farsund and B. U. Felderhof, “Force, torque, and absorbed energy for a body of arbitrary shape and constitution in an electromagnetic radiation field,” Physica A 227, 108-130 (1996). [CrossRef]
  33. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indexes--an integral-representation,” J. Opt. Soc. Am. A 12, 325-332 (1995). [CrossRef]
  34. R. S. Dutra, N. B. Viana, P. A. Maia Neto, and H. M. Nussenzveig, “Polarization effects in optical tweezers,” J. Opt. A 9, S221-S227(2007). [CrossRef]
  35. P. A. Maia Neto and H. M. Nussenzveig, “Theory of optical tweezers,” Europhys. Lett. 50, 702-708 (2000). [CrossRef]
  36. R. Symes, R. M. Sayer, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474-487 (2004). [CrossRef]
  37. B. Sun and D. G. Grier, “The effect of Mie resonances on trapping in optical tweezers: comment,” Opt. Express 17, 2658-2660 (2009). [CrossRef] [PubMed]
  38. T. A. Nieminen, A. B. Stilgoe, V. L. Loke, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “The effect of Mie resonances on trapping in optical tweezers: reply,” Opt. Express 17, 2661-2662(2009). [CrossRef]
  39. E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236, 145-150 (2004). [CrossRef]
  40. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569-582 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited