OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 12 — Dec. 1, 2011
  • pp: 2888–2894

Harmonic generation and energy transport in dielectric and semiconductors at visible and UV wavelengths: the case of GaP

V. Roppo, N. Akozbek, D. de Ceglia, M. A. Vincenti, and M. Scalora  »View Author Affiliations

JOSA B, Vol. 28, Issue 12, pp. 2888-2894 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (515 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the propagation and momentum transport of the inhomogeneous component of second and third harmonic pulses in dielectrics and semiconductors, at visible and UV wavelengths, focusing on materials like GaP. In these spectral regions GaP is characterized by large absorption, metallic behavior or a combination of both. We show that phase locking causes the generated inhomogeneous signals to propagate through a bulk metallic medium without being absorbed. This means that it occurs even in centrosymmetric materials thanks to the magnetic Lorentz force. We show that the transport of energy and momentum is quite peculiar and it can appear as anomalous, and that the direction of the Poynting vector of some of the harmonic pulses does not follow Snell’s law after crossing the interface. These results make it clear that there are new opportunities in ultrafast nonlinear optics and nanoplasmonics in new wavelength ranges.

© 2011 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4400) Nonlinear optics : Nonlinear optics, materials
(260.7190) Physical optics : Ultraviolet

ToC Category:
Nonlinear Optics

Original Manuscript: May 25, 2011
Revised Manuscript: September 14, 2011
Manuscript Accepted: September 30, 2011
Published: November 10, 2011

V. Roppo, N. Akozbek, D. de Ceglia, M. A. Vincenti, and M. Scalora, "Harmonic generation and energy transport in dielectric and semiconductors at visible and UV wavelengths: the case of GaP," J. Opt. Soc. Am. B 28, 2888-2894 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. J. Rocca, H. C. Kapteyn, D. T. Attwood, M. M. Murnane, C. S. Menoni, and E. H. Anderson, “Tabletop lasers in the extreme ultraviolet,” Opt. Photon. News 17, 30–38 (2006). [CrossRef]
  2. V. Roppo, J. V. Foreman, N. Akozbek, M. A. Vincenti, and M. Scalora, “Third harmonic generation at 223 nm in the metallic regime of GaP,” Appl. Phys. Lett. 98, 111105 (2011). [CrossRef]
  3. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  4. N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962). [CrossRef]
  5. P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962). [CrossRef]
  6. E. Fazio, F. Pettazzi, M. Centini, M. Chauvet, A. Belardini, M. Alonzo, C. Sibilia, M. Bertolotti, and M. Scalora, “Complete spatial and temporal locking in phase- mismatched second-harmonic generation,” Opt. Express 17, 3141–3147 (2009). [CrossRef] [PubMed]
  7. M. Centini, V. Roppo, E. Fazio, F. Pettazzi, C. Sibilia, J. W. Haus, J. V. Foreman, N. Akozbek, M. J. Bloemer, and M. Scalora, “Inhibition of linear absorption in opaque materials using phase-locked harmonic generation,” Phys. Rev. Lett. 101, 113905 (2008). [CrossRef] [PubMed]
  8. V. Roppo, M. Centini, C. Sibilia, M. Bertolotti, D. de Ceglia, M. Scalora, N. Akozbek, M. J. Bloemer, J. W. Haus, O. G. Kosareva, and V. P. Kandidov, “Role of phase matching in pulsed second harmonic generation: walk-off and phase-locked twin pulses in negative index media,” Phys. Rev. A 76, 033829 (2007). [CrossRef]
  9. V. Roppo, C. Cojocaru, F. Raineri, G. D’Aguanno, J. Trull, Y. Halioua, R. Raj, I. Sagnes, R. Vilaseca, and M. Scalora, “Field localization and enhancement of phase-locked second- and third-order harmonic generation in absorbing semiconductor cavities,” Phys. Rev. A 80, 043834 (2009). [CrossRef]
  10. V. Roppo, F. Raineri, R. Raj, I. Sagnes, J. Trull, R. Vilaseca, M. Scalora, and C. Cojocaru, “Generation efficiency of the second harmonic inhomogeneous component,” Opt. Lett. 36, 1809–1811(2011). [CrossRef] [PubMed]
  11. V. Roppo, C. Cojocaru, J. Trull, R. Vilaseca, and M. Scalora, “Cavity behaviour of second and third harmonic inhomogeneous solutions of Maxwell’s equations,” Waves Random Complex Media 20, 319–331 (2010). [CrossRef]
  12. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  13. M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007). [CrossRef]
  14. D. de Ceglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D’Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-IR ranges,” Phys. Rev. A 77, 033848 (2008). [CrossRef]
  15. M. A. Vincenti, A. D’Orazio, M. G. Cappeddu, N. Akozbek, M. J. Bloemer, and M. Scalora, “Semiconductor-based superlens for subwavelength resolution below the diffraction limit at extreme ultraviolet frequencies,” Appl. Phys. 105, 103103–103108 (2009). [CrossRef]
  16. M. A. Vincenti, D. de Ceglia, V. Roppo, and M. Scalora, “Harmonic generation in metallic, GaAs-filled nanocavities in the enhanced transmission regime at visible and UV wavelengths,” Opt. Express 19, 2064–2078 (2011). [CrossRef] [PubMed]
  17. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6, 946–950 (2007). [CrossRef] [PubMed]
  18. R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16, 6507–6514 (2008). [CrossRef] [PubMed]
  19. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313, 1595 (2006). [CrossRef] [PubMed]
  20. E. D. Palik, “Handbook of Optical Constants of Solids,” (Academic, 1985).
  21. R. W. Boyd, “Nonlinear Optics,” (Academic, 2008).
  22. M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second and third harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828(2010). [CrossRef]
  23. V. Roppo, M. Centini, D. de Ceglia, M. A. Vincenti, J. W. Haus, N. Akozbek, M. J. Bloemer, and M. Scalora, “Anomalous momentum states, non-specular reflections and negative refraction of phase-locked, second harmonic pulses,” Metamaterials 2, 135–144 (2008). [CrossRef]
  24. M. Scalora, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, J. W. Haus, and A. M. Zheltikov, “Negative refraction of ultra-short electromagnetic pulses,” Appl. Phys. B 81, 393–402(2005). [CrossRef]
  25. S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, “Theory of the linear and nonlinear optical properties of semiconductor microcrystallites,” Phys. Rev. B 35, 8113–8125 (1987). [CrossRef]
  26. O. Voskoboynikov, G. Dyankov, and C. M. J. Wijers, “Left handed composite materials in the optical range,” Microelectron. J. 36, 564–566 (2005). [CrossRef]
  27. Q. Thommen and P. Mandel, “Electromagnetically induced left handedness in optically excited four-level atomic media,” Phys. Rev. Lett. 96, 053601 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: MOV (217 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited