OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 12 — Dec. 1, 2011
  • pp: 2909–2914

Atomic quantum state transferring and swapping via quantum Zeno dynamics

Zhi-Cheng Shi, Yan Xia, Jie Song, and He-Shan Song  »View Author Affiliations


JOSA B, Vol. 28, Issue 12, pp. 2909-2914 (2011)
http://dx.doi.org/10.1364/JOSAB.28.002909


View Full Text Article

Enhanced HTML    Acrobat PDF (424 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we first demonstrate how to realize quantum state transferring (QST) from one atom to another based on quantum Zeno dynamics. Then, the QST protocol is generalized to realize the quantum state swapping (QSS) between two arbitrary atoms with the help of a third one. Furthermore, we also consider the QSS within a quantum network. The influence of decoherence is analyzed by numerical calculation. The results demonstrate that the protocols are robust against cavity decay.

© 2011 Optical Society of America

OCIS Codes
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: July 1, 2011
Revised Manuscript: August 30, 2011
Manuscript Accepted: October 3, 2011
Published: November 10, 2011

Citation
Zhi-Cheng Shi, Yan Xia, Jie Song, and He-Shan Song, "Atomic quantum state transferring and swapping via quantum Zeno dynamics," J. Opt. Soc. Am. B 28, 2909-2914 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-12-2909


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030(2008). [CrossRef] [PubMed]
  3. S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000). [CrossRef] [PubMed]
  4. D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709–711(2002). [CrossRef] [PubMed]
  5. M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001). [CrossRef] [PubMed]
  6. J. Q. You and F. Nori, “Quantum information processing with superconducting qubits in a microwave field,” Phys. Rev. B 68, 064509 (2003). [CrossRef]
  7. Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008). [CrossRef] [PubMed]
  8. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52(2001). [CrossRef] [PubMed]
  9. J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003). [CrossRef] [PubMed]
  10. Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008). [CrossRef]
  11. A. Kuzmich and E. S. Polzik, “Atomic quantum state teleportation and swapping,” Phys. Rev. Lett. 85, 5639–5642 (2000). [CrossRef]
  12. A. Biswas and G. S. Agarwal, “Transfer of an unknown quantum state, quantum networks, and memory,” Phys. Rev. A 70, 022323(2004). [CrossRef]
  13. J. F. Zhang, X. H. Peng, and D. Suter, “Speedup of quantum-state transfer by three-qubit interactions: Implementation by nuclear magnetic resonance,” Phys. Rev. A 73, 062325 (2006). [CrossRef]
  14. H. Wei, Z. J. Deng, X. L. Zhang, and M. Feng, “Transfer and teleportation of quantum states encoded in decoherence-free subspace,” Phys. Rev. A 76, 054304 (2007). [CrossRef]
  15. A. Bayat and V. Karimipour, “Transfer of d-level quantum states through spin chains by random swapping,” Phys. Rev. A 75, 022321 (2007). [CrossRef]
  16. C. D. Franco, M. Paternostro, and M. S. Kim, “Quantum state transfer via temporal kicking of information,” Phys. Rev. A 81, 022319 (2010). [CrossRef]
  17. B. Chen, W. Fan, and Y. Xu, “Adiabatic quantum state transfer in a nonuniform triple-quantum-dot system,” Phys. Rev. A 83, 014301 (2011). [CrossRef]
  18. P. B. Li, Y. Gu, Q. H. Gong, and G. C. Guo, “Quantum-information transfer in a coupled resonator waveguide,” Phys. Rev. A 79, 042339 (2009). [CrossRef]
  19. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224(1997). [CrossRef]
  20. A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007). [CrossRef] [PubMed]
  21. S. Bose, “Quantum communication through an unmodulated spin chain,” Phys. Rev. Lett. 91, 207901 (2003). [CrossRef] [PubMed]
  22. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef] [PubMed]
  23. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997). [CrossRef]
  24. D. Boschi, S. Branca1, F. D. Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998). [CrossRef]
  25. M. A. Nielsen, E. Knill, and R. Laflamme, “Complete quantum teleportation using nuclear magnetic resonance,” Nature 396, 52–55 (1998). [CrossRef]
  26. C. P. Yang, “Quantum information transfer with superconducting flux qubits coupled to a resonator,” Phys. Rev. A 82, 054303(2010). [CrossRef]
  27. P. Facchi, V. Gorini, G. Marmo, S. Pascazio, and E. C. G. Sudarshan, “Quantum Zeno dynamics,” Phys. Lett. A 275, 12–19 (2000). [CrossRef]
  28. P. Facchi, S. Pascazio, A. Scardicchio, and L. S. Schulman, “Zeno dynamics yields ordinary constraints,” Phys. Rev. A 65, 012108(2001). [CrossRef]
  29. P. Facchi and S. Pascazio, “Quantum Zeno and inverse quantum Zeno effects,” Prog. Opt. 42, 147–217 (2001). [CrossRef]
  30. B. Misra and E. C. G. Sudarshan, “The Zeno’s paradox in quantum theory,” J. Math. Physics 18, 756–763 (1977). [CrossRef]
  31. P. Jiannis and W. Herbert, “Quantum computation with trapped ions in an optical cavity,” Phys. Rev. Lett. 89, 187903 (2002). [CrossRef]
  32. K. P. Jiannis and B. Almut, “Decoherence-free dynamical and geometrical entangling phase gates,” Phys. Rev. A 69, 033817(2004). [CrossRef]
  33. X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, and K. H. Yeon, “One-step implementation of the Toffoli gate via quantum Zeno dynamics,” Phys. Lett. A 374, 28–33 (2009). [CrossRef]
  34. S. Zhang, X. Q. Shao, L. Chen, Y. F. Zhao, and K. H. Yeon, “Robust swap gate on nitrogen-vacancy centres via quantum Zeno dynamics,” J. Phys. B 44, 075505 (2011). [CrossRef]
  35. X. B. Wang, J. Q. You, and F. Nori, “Quantum entanglement via two-qubit quantum Zeno dynamics,” Phys. Rev. A 77, 062339(2008). [CrossRef]
  36. X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 50003 (2010). [CrossRef]
  37. X. Q. Shao, H. F. Wang, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics,” New J. Phys. 12, 023040(2010). [CrossRef]
  38. A. L. Wen, “Distributed qutrit-qutrit entanglement via quantum Zeno dynamics,” Opt. Commun. 284, 2245–2249 (2011). [CrossRef]
  39. A. L. Wen and Y. H. Guang, “Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics,” Phys. Rev. A 83, 022322 (2011). [CrossRef]
  40. P. Facchi, G. Marmo, and S. Pascazio, “Quantum Zeno dynamics and quantum Zeno subspaces,” J. Phys Conf. Ser. 196, 012017(2009). [CrossRef]
  41. P. Facchi and S. Pascazio, “Quantum Zeno subspaces,” Phys. Rev. Lett. 89, 080401 (2002). [CrossRef] [PubMed]
  42. T. Pellizzari, “Quantum networking with optical fibres,” Phys. Rev. Lett. 79, 5242 (1997). [CrossRef]
  43. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006). [CrossRef] [PubMed]
  44. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005). [CrossRef]
  45. J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003). [CrossRef]
  46. K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, “A short wavelength gigahertz clocked fiber optic quantum key distribution system,” IEEE J. Quantum Electron. 40, 900–908 (2004). [CrossRef]
  47. F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael, “Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system,” Phys. Rev. A 75, 013804 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited