## Nonlinear effects in random lasers |

JOSA B, Vol. 28, Issue 12, pp. 2947-2955 (2011)

http://dx.doi.org/10.1364/JOSAB.28.002947

Enhanced HTML Acrobat PDF (847 KB)

### Abstract

Recent numerical and theoretical studies have demonstrated that the modes at threshold of a random laser are in direct correspondence with the resonances of the same system without gain, a feature which is well known in conventional lasers but not known until recently for random lasers. This paper presents numerical results of the multimode regime that takes place when the pumping rate is progressively increased above threshold. Behavior that is already known in standard lasers, such as mode competition and nonlinear wave mixing, are shown to also take place in random lasers thus reinforcing their recent modal description. However, due to the complexity of the laser modes and to the openness of such lasers, which require large external pumping to compensate for strong loss, one observes that these effects are systematic and can be more pronounced than in a conventional laser.

© 2011 Optical Society of America

**OCIS Codes**

(140.3460) Lasers and laser optics : Lasers

(290.4210) Scattering : Multiple scattering

(190.4223) Nonlinear optics : Nonlinear wave mixing

(260.2710) Physical optics : Inhomogeneous optical media

**ToC Category:**

Lasers and Laser Optics

**History**

Original Manuscript: July 29, 2011

Revised Manuscript: September 14, 2011

Manuscript Accepted: September 30, 2011

Published: November 18, 2011

**Citation**

Jonathan Andreasen, Patrick Sebbah, and Christian Vanneste, "Nonlinear effects in random lasers," J. Opt. Soc. Am. B **28**, 2947-2955 (2011)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-12-2947

Sort: Year | Journal | Reset

### References

- V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840(1968).
- H. Cao, “Lasing in random media,” Waves Random Media 13, R1–R39 (2003) and references therein. [CrossRef]
- Y. Li, X. Ma, M. Xu, L. Xiang, and D. Yang, “Remarkable decrease in threshold for electrically pumped random ultraviolet lasing from ZnO fim by incorporation of Zn2TiO4 nanoparticles,” Opt. Express 19, 8662–8669 (2011). [CrossRef] [PubMed]
- S. John and G. Pang, “Theory of lasing in a multiple-scattering medium,” Phys. Rev. A 54, 3642–3652 (1996). [CrossRef] [PubMed]
- D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996). [CrossRef]
- H. Cao, J. Y. Xu, S.-H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61, 1985–1989 (2000). [CrossRef]
- X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85, 70–73 (2000). [CrossRef] [PubMed]
- C. Vanneste and P. Sebbah, “Selective excitation of localized modes in active random media,” Phys. Rev. Lett. 87, 183903(2001). [CrossRef]
- R. C. Polson, M. E. Raikh, and Z. V. Vardeny, “Universality in unintentional laser resonators in π-conjugated polymer films,” C. R. Acad. Sci. Ser. IV A, 509–521 (2002).
- V. M. Apalkov, M. E. Raikh, and B. Shapiro, “Random resonators and prelocalized modes in disordered dielectric films,” Phys. Rev. Lett. 89, 016802 (2002). [CrossRef] [PubMed]
- A. Tulek, R. C. Polson, and Z. V. Vardeny, “Naturally occurring resonators in random lasing of π-conjugated polymer films,” Nat. Phys. 6, 303–310 (2010). [CrossRef]
- S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903(2004). [CrossRef] [PubMed]
- C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98, 143902 (2007). [CrossRef] [PubMed]
- H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320, 643–646 (2008). [CrossRef] [PubMed]
- H. E. Türeci, A. D. Stone, L. Ge, S. Rotter, and R. J. Tandy, “Ab initio self-consistent laser theory and random lasers,” Nonlinearity 22, C1–C18 (2009). [CrossRef]
- O. Zaitsev, L. Deych, and V. Shuvayev, “Statistical properties of one-dimensional random lasers,” Phys. Rev. Lett. 102, 043906(2009). [CrossRef] [PubMed]
- O. Zaitsev and L. Deych, “Recent developments in the theory of multimode random lasers,” J. Opt. 12, 024001 (2010). [CrossRef]
- O. Zaitsev and L. Deych, “Diagrammatic semiclassical laser theory,” Phys. Rev. A 81, 023822 (2010). [CrossRef]
- J. Andreasen, A. Asatryan, L. Botten, M. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste, “Modes of random lasers,” Adv. Opt. Photon. 3, 88–127 (2011). [CrossRef]
- S. M. Dutra and G. Nienhuis, “Quantized modes of a leaky cavity,” Phys. Rev. B 62, 063805 (2000).
- H. Cao, X. Jiang, Y. Ling, J. Y. Xu, and C. M. Soukoulis, “Mode repulsion and mode coupling in random lasers,” Phys. Rev. B 67, 161101(R) (2003). [CrossRef]
- X. Jiang, S. Feng, C. M. Soukoulis, J. Zi, J. D. Joannopoulos, and H. Cao, “Coupling, competition, and stability of modes in random lasers,” Phys. Rev. B 69, 104202 (2004). [CrossRef]
- C. Conti, M. Leonetti, A. Fratalocchi, L. Angelani, and G. Ruocco, “Condensation in disordered lasers: Theory, 3d+1 simulations, and experiments,” Phys. Rev. Lett. 101, 143901 (2008). [CrossRef] [PubMed]
- H. E. Türeci, A. D. Stone, and B. Collier, “Self-consistent multimode lasing theory for complex or random lasing media,” Phys. Rev. A 74, 043822 (2006). [CrossRef]
- L. Ge, R. J. Tandy, A. D. Stone, and H. E. Türeci, “Quantitative verification of ab initio self-consistent laser theory,” Opt. Express 16, 16895–16902 (2008). [CrossRef] [PubMed]
- E. Roldán, G. J. de Valcárcel, F. Prati, F. Mitschke, and T. Voigt, “Multilongitudinal mode emission in ring cavity class B lasers,” in “Trends in Spatiotemporal Dynamics in Lasers. Instabilities, Polarization Dynamics, and Spatial Structures,” O.Gomez-Calderon and J.M.Guerra, eds. (Research Signpost, 2005), pp. 1–80.
- J. Andreasen, P. Sebbah, and C. Vanneste, “Coherent instabilities in random lasers,” Phys. Rev. A 84, 023826 (2011). [CrossRef]
- J. Andreasen and H. Cao, “Creation of new lasing modes with spatially nonuniform gain,” Opt. Lett. 34, 3586–3588 (2009). [CrossRef] [PubMed]
- J. Andreasen and H. Cao, “Numerical study of amplified spontaneous emission and lasing in random media,” Phys. Rev. A 82, 063835 (2010). [CrossRef]
- P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66, 144202 (2002). [CrossRef]
- J. Andreasen and H. Cao, “Spectral behavior of partially pumped weakly scattering random lasers,” Opt. Express 19, 3418–3433(2011). [CrossRef] [PubMed]
- A. Taflove and S. Hagness, Computational Electrodynamics (Artech House, 2005), 3rd ed.
- A. S. Nagra and R. A. York, “FDTD analysis of wave propagation in nonlinear absorbing and gain media,” IEEE Trans. Antennas Propag. 46, 334–340 (1998). [CrossRef]
- A. E. Siegman, Lasers (University Science Books, 1986).
- C. M. Soukoulis, X. Jiang, J. Y. Xu, and H. Cao, “Dynamic response and relaxation oscillations in random lasers,” Phys. Rev. B 65, 041103(R) (2002). [CrossRef]
- M. A. Noginov, G. Zhu, A. A. Frantz, J. Novak, S. N. Williams, and I. Fowlkes, “Dependence of NdSc3(BO3)4 random laser parameters on particle size,” J. Opt. Soc. Am. B 21, 191–200 (2004) and references cited therein. [CrossRef]
- K. L. van der Molen, A. P. Mosk, and A. Lagendijk, “Relaxation oscillations in long-pulsed random lasers,” Phys. Rev. A 80, 055803 (2009). [CrossRef]
- J. Andreasen, C. Vanneste, L. Ge, and H. Cao, “Effects of spatially nonuniform gain on lasing modes in weakly scattering random systems,” Phys. Rev. A 81, 043818 (2010). [CrossRef]
- X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, and H. Cao, “Random lasing in weakly scattering systems,” Phys. Rev. A 74, 053812 (2006). [CrossRef]
- C. Vanneste and P. Sebbah, “Complexity of two-dimensional quasimodes at the transition from weak scattering to Anderson localization,” Phys. Rev. A 79, 041802(R) (2009). [CrossRef]
- B. Liu, A. Yamilov, Y. Ling, J. Y. Xu, and H. Cao, “Dynamic nonlinear effect on lasing in a random medium,” Phys. Rev. Lett. 91, 063903 (2003). The surprising drift of mode 1 across the maximum of the gain curve, toward mode 2 [Fig. ], is attributed to the nonlinear Kerr effect. [CrossRef] [PubMed]
- R. C. Miller, “Optical harmonic generation in single crystal BaTiO3,” Phys. Rev. 134, A1313–A1319 (1964). [CrossRef]
- C. F. Dewey Jr. and L. O. Hocker, “Enhanced nonlinear optical effects in rotationally twinned crystals,” Appl. Phys. Lett. 26, 442–444 (1975). [CrossRef]
- E. Y. Morozov and A. S. Chirkin, “Stochastic quasi-phase matching in nonlinear-optical crystals with an irregular domain structure,” Quantum Electron. 34, 227–232 (2004). [CrossRef]
- V. A. Mel’nikov, L. A. Golovan, S. O. Konorov, D. A. Muzychenko, A. B. Fedotov, A. M. Zheltikov, V. Y. Timoshenko, and P. K. Kashkarov, “Second-harmonic generation in strongly scattering porous gallium phosphide,” Appl. Phys. B 79, 225–228 (2004). [CrossRef]
- M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature 432, 374–376 (2004). [CrossRef] [PubMed]
- S. E. Skipetrov, “Disorder is the new order,” Nature 432, 285–286 (2004). [CrossRef] [PubMed]
- R. Bardoux, A. Kaneta, M. Funato, K. Okamoto, Y. Kawakami, A. Kikuchi, and K. Kishino, “Single mode emission and non-stochastic laser system based on disordered point-sized structures: toward a tuneable random laser,” Opt. Express 19, 9262–9268 (2011). [CrossRef] [PubMed]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.