OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 12 — Dec. 1, 2011
  • pp: 2956–2965

Nonlocal homogenization of metamaterials by dual interpolation of fields

Igor Tsukerman  »View Author Affiliations

JOSA B, Vol. 28, Issue 12, pp. 2956-2965 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (919 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The proposed homogenization theory—a major extension of the recently published methodology [ J. Opt. Soc. Am. B 28, 577 (2011)]—yields an extended second-order material tensor consolidating the usual 36 local material parameters and additional ones that rigorously quantify nonlocality. The local part of the tensor relates the mean values of pairs of coarse-grained fields, while the nonlocal part relates the mean values to variations of the fields. The theory is based on a direct analysis of fields in a lattice cell rather than on an indirect retrieval of material parameters from transmission/reflection data. There are no heuristic assumptions and no artificial averaging rules. Nontrivial magnetic behavior, if present, is a logical consequence of the theory. The approximations involved and the respective errors are clearly identified. Illustrative examples of resonant structures with high-permittivity inclusions are given.

© 2011 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(050.2065) Diffraction and gratings : Effective medium theory
(160.3918) Materials : Metamaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Diffraction and Gratings

Original Manuscript: June 21, 2011
Revised Manuscript: August 28, 2011
Manuscript Accepted: September 16, 2011
Published: November 21, 2011

Igor Tsukerman, "Nonlocal homogenization of metamaterials by dual interpolation of fields," J. Opt. Soc. Am. B 28, 2956-2965 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. K. Sarychev and V. M. Shalaev, Electrodynamics of Metamaterials (World Scientific, 2007). [CrossRef]
  2. C. R. Simovski, “On material parameters of metamaterials (review),” Opt. Spectrosc. 107, 726–753 (2009). [CrossRef]
  3. C. R. Simovski and S. A. Tretyakov, “On effective electromagnetic parameters of artificial nanostructured magnetic materials,” Photon. Nanostr. 8, 254–263 (2010). [CrossRef]
  4. C. Fietz and G. Shvets, “Homogenization theory for simple metamaterials modeled as one-dimensional arrays of thin polarizable sheets,” Phys. Rev. B 82, 205128 (2010). [CrossRef]
  5. I. Tsukerman, “Effective parameters of metamaterials: a rigorous homogenization theory via Whitney interpolation,” J. Opt. Soc. Am. B 28, 577–586 (2011). [CrossRef]
  6. A. Alù, “Restoring the physical meaning of metamaterial constitutive parameters,” Phys. Rev. B 83, 081102(R) (2011). [CrossRef]
  7. D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging,” J. Opt. Soc. Am. B 23, 391–403 (2006). [CrossRef]
  8. M. G. Silveirinha, “Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters,” Phys. Rev. B 75, 115104 (2007). [CrossRef]
  9. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984).
  10. V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion, and Excitons, 2nd ed. (Springer-Verlag, 1984).
  11. A. Bossavit, Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements (Academic, 1998).
  12. W. Cai, U. K. Chettiar, H.-K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15, 3333–3341 (2007). [CrossRef] [PubMed]
  13. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]
  14. X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005). [CrossRef]
  15. Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79, 026610(2009). [CrossRef]
  16. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004). [CrossRef]
  17. R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R. Smith, “Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory,” Phys. Rev. E 76, 026606 (2007). [CrossRef]
  18. C. Scheiber, A. Schultschik, O. Bíró, and R. Dyczij-Edlinger, “A model order reduction method for efficient band structure calculations of photonic crystals,” IEEE Trans. Magn. 47, 1534–1537 (2011). [CrossRef]
  19. I. Babuška and J. M. Melenk, “The partition of unity method,” Int. J. Num. Meth. Eng. 40, 727–758 (1997). [CrossRef]
  20. A. Plaks, I. Tsukerman, G. Friedman, and B. Yellen, “Generalized finite element method for magnetized nanoparticles,” IEEE Trans. Magn. 39, 1436–1439 (2003). [CrossRef]
  21. I. Babuška and R. Lipton, “Optimal local approximation spaces for generalized finite element methods with application to multiscale problems,” Multiscale Model. Simul. 9, 373–406(2011). [CrossRef]
  22. R. Hiptmair, A. Moiola, and I. Perugia, “Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations,” preprint IMATI-CNR Pavia, http://www-dimat.unipv.it/perugia/PREPRINTS/TDGM.pdf (2011).
  23. I. Tsukerman, “A class of difference schemes with flexible local approximation,” J. Comp. Phys. 211, 659–699 (2006). [CrossRef]
  24. I. Tsukerman, Computational Methods for Nanoscale Applications: Particles, Plasmons and Waves (Springer, 2007).
  25. I. Tsukerman and F. Čajko, “Photonic band structure computation using FLAME,” IEEE Trans. Magn. 44, 1382–1385 (2008). [CrossRef]
  26. G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins Univ., 1996).
  27. J. W. Demmel, Applied Numerical Linear Algebra (SIAM, 1997). [CrossRef]
  28. J. Shlens, “A tutorial on principal component analysis,” http://www.snl.salk.edu/~shlens/pca.pdf (2009).
  29. H. Whitney, Geometric Integration Theory (Princeton Univ., 1957).
  30. V. A. Markel, Radiology and Bioengineering, University of Pennsylvania, 3400 Spruce St., Philadelphia, Pa., 19104 (private communication, 2010–2011).
  31. A. P. Vinogradov, “On the form of constitutive equations in electrodynamics,” Phys. Usp. 45, 331–338 (2002). [CrossRef]
  32. I. Tsukerman, “Negative refraction and the minimum lattice cell size,” J. Opt. Soc. Am. B 25, 927–936 (2008). [CrossRef]
  33. V. A. Markel, “On the current-driven model in the classical electrodynamics of continuous media,” J. Phys. 22, 485401(2010). [CrossRef]
  34. D. Felbacq and G. Bouchitté, “Theory of mesoscopic magnetism in photonic crystals,” Phys. Rev. Lett. 94, 183902 (2005). [CrossRef] [PubMed]
  35. D. Felbacq, B. Guizal, G. Bouchitté, and C. Bourel, “Resonant homogenization of a dielectric metamaterial,” Microw. Opt. Technol. Lett. 51, 2695–2701 (2009). [CrossRef]
  36. B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett. 106, 185501 (2011). [CrossRef] [PubMed]
  37. B. Gompf, Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57 Stuttgart 70550, Germany, and R. Vogelgesang, Max-Planck Institute for Solid State Research, Heisenbergstrasse 1 Stuttgart 70569, Germany (private communication, 2011).
  38. A. Pors, I. Tsukerman, and S. I. Bozhevolnyi, “Effective constitutive parameters of plasmonic metamaterials: homogenization by dual field interpolation,” Phys. Rev. E 84, 016609 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited