OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 12 — Dec. 1, 2011
  • pp: A11–A26

Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited]

John C. Travers, Wonkeun Chang, Johannes Nold, Nicolas Y. Joly, and Philip St. J. Russell  »View Author Affiliations

JOSA B, Vol. 28, Issue 12, pp. A11-A26 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2714 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We review the use of hollow-core photonic crystal fibers (PCFs) in the field of ultrafast gas-based nonlinear optics, including recent experiments, numerical modeling, and a discussion of future prospects. Concentrating on broadband guiding kagomé-style hollow-core PCF, we describe its potential for moving conventional nonlinear fiber optics both into extreme regimes—such as few-cycle pulse compression and efficient deep ultraviolet wavelength generation—and into regimes hitherto inaccessible, such as single-mode guidance in a photoionized plasma and high-harmonic generation in fiber.

© 2011 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(260.5210) Physical optics : Photoionization
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

Original Manuscript: October 4, 2011
Manuscript Accepted: October 11, 2011
Published: November 30, 2011

Virtual Issues
(2011) Advances in Optics and Photonics
February 24, 2012 Spotlight on Optics

John C. Travers, Wonkeun Chang, Johannes Nold, Nicolas Y. Joly, and Philip St. J. Russell, "Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited]," J. Opt. Soc. Am. B 28, A11-A26 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. H. Stolen, “Raman oscillation in glass optical waveguide,” Appl. Phys. Lett. 20, 62–63 (1972). [CrossRef]
  2. E. P. Ippen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–540 (1972). [CrossRef]
  3. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002). [CrossRef] [PubMed]
  4. M. C. Downer, “A new low for nonlinear optics,” Science 298, 373–375 (2002). [CrossRef] [PubMed]
  5. P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. Saleh, F. Biancalana, and P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011). [CrossRef] [PubMed]
  6. E. M. Dianov, P. V. Mamyshev, and A. M. Prokhorov, “Nonlinear fiber optics,” Sov. J. Quantum Electron. 18, 1–15 (1988). [CrossRef]
  7. G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).
  8. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photon. 3, 85–90 (2009). [CrossRef]
  9. A. Hasegawa, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973). [CrossRef]
  10. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980). [CrossRef]
  11. E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stel’Makh, and A. A. Fomichev, “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Lett. 41, 242–244 (1985).
  12. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986). [CrossRef] [PubMed]
  13. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56–58 (1988). [CrossRef] [PubMed]
  14. C. Lin and R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218(1976). [CrossRef]
  15. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184(2006). [CrossRef]
  16. J. C. Travers, “Continuous wave supercontinuum generation,” in Supercontinuum Generation in Optical Fibers, J.M.Dudley and J.R.Taylor, eds. (Cambridge Univ., 2010), pp. 142–177. [CrossRef]
  17. R. Stolen, “Phase-matched-stimulated four-photon mixing in silica-fiber waveguides,” IEEE J. Quantum Electron. 11, 100–103 (1975). [CrossRef]
  18. A. Hasegawa and W. Brinkman, “Tunable coherent IR and FIR sources utilizing modulational instability,” IEEE J. Quantum Electron. 16, 694–697 (1980). [CrossRef]
  19. E. P. Ippen, “Self-phase modulation of picosecond pulses in optical fibers,” Appl. Phys. Lett. 24, 190–192 (1974). [CrossRef]
  20. R. H. Stolen and H. W. K. Tom, “Self-organized phase-matched harmonic generation in optical fibers,” Opt. Lett. 12, 585–587(1987). [CrossRef] [PubMed]
  21. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996). [CrossRef]
  22. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524(1997). [CrossRef] [PubMed]
  23. A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, “Generation of sub-10 fs, 5 mJ-optical pulses using a hollow fiber with a pressure gradient,” Appl. Phys. Lett. 86, 111116(2005). [CrossRef]
  24. C. G. Durfee III, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Ultrabroadband phase-matched optical parametric generation in the ultraviolet by use of guided waves,” Opt. Lett. 22, 1565–1567 (1997). [CrossRef]
  25. A. Rundquist, C. G. Durfee, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412–1415 (1998). [CrossRef] [PubMed]
  26. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539(1999). [CrossRef] [PubMed]
  27. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006). [CrossRef] [PubMed]
  28. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006). [CrossRef]
  29. P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362(2003). [CrossRef] [PubMed]
  30. J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851(2003). [CrossRef] [PubMed]
  31. A. R. Bhagwat and A. L. Gaeta, “Nonlinear optics in hollow-core photonic bandgap fibers,” Opt. Express 16, 5035–5047 (2008). [CrossRef] [PubMed]
  32. F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87–124 (2011). [CrossRef]
  33. A. Abdolvand, A. Nazarkin, A. V. Chugreev, C. F. Kaminski, and P. St. J. Russell, “Solitary pulse generation by backward Raman scattering in H2-filled photonic crystal fibers,” Phys. Rev. Lett. 103, 183902 (2009). [CrossRef] [PubMed]
  34. A. Nazarkin, A. Abdolvand, A. V. Chugreev, and P. St. J. Russell, “Direct observation of self-similarity in evolution of transient stimulated Raman scattering in gas-filled photonic crystal fibers,” Phys. Rev. Lett. 105, 173902 (2010). [CrossRef]
  35. P. Londero, V. Venkataraman, A. R. Bhagwat, A. D. Slepkov, and A. L. Gaeta, “Ultralow-power four-wave mixing with Rb in a hollow-core photonic band-gap fiber,” Phys. Rev. Lett. 103, 043602 (2009). [CrossRef] [PubMed]
  36. S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94, 093902 (2005). [CrossRef] [PubMed]
  37. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003). [CrossRef] [PubMed]
  38. F. Benabid, J. C. Knight, and P. St. J. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express 10, 1195–1203 (2002). [PubMed]
  39. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005). [CrossRef] [PubMed]
  40. F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93, 123903 (2004). [CrossRef] [PubMed]
  41. JCMwave, http://www.jcmwave.com (JCMwave GmbH, n.d.).
  42. S.-J. Im, A. Husakou, and J. Herrmann, “Guiding properties and dispersion control of kagome lattice hollow-core photonic crystal fibers,” Opt. Express 17, 13050–13058 (2009). [CrossRef] [PubMed]
  43. J. Nold, P. Hölzer, N. Y. Joly, G. K. L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. St. J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett. 35, 2922–2924(2010). [CrossRef] [PubMed]
  44. E. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers (long distance optical transmission in hollow dielectric and metal circular waveguides, examining normal mode propagation),” Bell Syst. Tech. J. 43, 1783–1809 (1964).
  45. W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19, 21018–21027 (2011). [CrossRef] [PubMed]
  46. A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion measurement of inert gases and gas mixtures at 800 nm,” Appl. Opt. 47, 4856–4863 (2008). [CrossRef] [PubMed]
  47. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809(2000). [CrossRef]
  48. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]
  49. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011). [CrossRef] [PubMed]
  50. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007). [CrossRef] [PubMed]
  51. H. J. Lehmeier, W. Leupacher, and A. Penzkofer, “Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation,” Opt. Commun. 56, 67–72 (1985). [CrossRef]
  52. F. Dorchies, J. R. Marquès, B. Cros, G. Matthieussent, C. Courtois, T. Vélikoroussov, P. Audebert, J. P. Geindre, S. Rebibo, G. Hamoniaux, and F. Amiranoff, “Monomode guiding of 1016 W/cm2 laser pulses over 100 Rayleigh lengths in hollow capillary dielectric tubes,” Phys. Rev. Lett. 82, 4655–4658 (1999). [CrossRef]
  53. A. A. Ishaaya, C. J. Hensley, B. Shim, S. Schrauth, K. W. Koch, and A. L. Gaeta, “Highly-efficient coupling of linearly- and radially-polarized femtosecond pulses in hollow-core photonic band-gap fibers,” Opt. Express 17, 18630–18637 (2009). [CrossRef]
  54. J. Henningsen and J. Hald, “Dynamics of gas flow in hollow core photonic bandgap fibers,” Appl. Opt. 47, 2790–2797 (2008). [CrossRef] [PubMed]
  55. G. Fibich and A. L. Gaeta, “Critical power for self-focusing in bulk media and in hollow waveguides,” Opt. Lett. 25, 335–337(2000). [CrossRef]
  56. G. Tempea and T. Brabec, “Theory of self-focusing in a hollow waveguide,” Opt. Lett. 23, 762–764 (1998). [CrossRef]
  57. C. V. Shank, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40, 761–763 (1982). [CrossRef]
  58. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1, 139–149 (1984). [CrossRef]
  59. C. J. S. de Matos, J. R. Taylor, T. Hansen, K. Hansen, and J. Broeng, “All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,” Opt. Express 11, 2832–2837 (2003). [CrossRef] [PubMed]
  60. C. J. S. de Matos, S. V. Popov, A. B. Rulkov, J. R. Taylor, J. Broeng, T. P. Hansen, and V. P. Gapontsev, “All-fiber format compression of frequency chirped pulses in air-guiding photonic crystal fibers,” Phys. Rev. Lett. 93, 103901 (2004). [CrossRef] [PubMed]
  61. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tünnermann, “All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber,” Opt. Express 11, 3332–3337 (2003). [CrossRef] [PubMed]
  62. O. H. Heckl, C. J. Saraceno, C. R. E. Baer, T. Südmeyer, Y. Y. Wang, Y. Cheng, F. Benabid, and U. Keller, “Temporal pulse compression in a xenon-filled kagome-type hollow-core photonic crystal fiber at high average power,” Opt. Express 19, 19142–19149 (2011). [CrossRef] [PubMed]
  63. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett. 8, 289–291 (1983). [CrossRef] [PubMed]
  64. K. Tai and A. Tomita, “1100× optical fiber pulse compression using grating pair and soliton effect at 1.319 μm,” Appl. Phys. Lett. 48, 1033–1035 (1986). [CrossRef]
  65. A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, “Generation of 33 fsec pulses at 1.32 μm through a high-order soliton effect in a single-mode optical fiber,” Opt. Lett. 12, 395–397 (1987). [CrossRef] [PubMed]
  66. D. Ouzounov, C. Hensley, A. Gaeta, N. Venkateraman, M. Gallagher, and K. Koch, “Soliton pulse compression in photonic band-gap fibers.,” Opt. Express 13, 6153–6159 (2005). [CrossRef] [PubMed]
  67. F. Gérôme, P. Dupriez, J. Clowes, J. C. Knight, and W. J. Wadsworth, “High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling,” Opt. Express 16, 2381–2386 (2008). [CrossRef] [PubMed]
  68. P. J. Mosley, W. C. Huang, M. G. Welch, B. J. Mangan, W. J. Wadsworth, and J. C. Knight, “Ultrashort pulse compression and delivery in a hollow-core photonic crystal fiber at 540 nm wavelength,” Opt. Lett. 35, 3589–3591 (2010). [CrossRef] [PubMed]
  69. E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, and A. A. Podshivalov, “Optimal compression of multi-soliton pulses,” Sov. Tech. Phys. Lett. 12, 311–313 (1986).
  70. C. M. Chen and P. L. Kelley, “Nonlinear pulse compression in optical fibers: scaling laws and numerical analysis,” J. Opt. Soc. Am. B 19, 1961–1967 (2002). [CrossRef]
  71. A. A. Voronin and A. M. Zheltikov, “Soliton-number analysis of soliton-effect pulse compression to single-cycle pulse widths,” Phys. Rev. A 78, 063834 (2008). [CrossRef]
  72. H. H. Kuehl, “Solitons on an axially nonuniform optical fiber,” J. Opt. Soc. Am. B 5, 709–713 (1988). [CrossRef]
  73. S. V. Chernikov and P. V. Mamyshev, “Femtosecond soliton propagation in fibers with slowly decreasing dispersion,” J. Opt. Soc. Am. B 8, 1633–1641 (1991). [CrossRef]
  74. J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, and J. R. Taylor, “Optical pulse compression in dispersion decreasing photonic crystal fiber,” Opt. Express 15, 13203–13211 (2007). [CrossRef] [PubMed]
  75. F. Gérôme, K. Cook, A. K. George, W. J. Wadsworth, and J. C. Knight, “Delivery of sub-100 fs pulses through 8 m of hollow-core fiber using soliton compression,” Opt. Express 15, 7126–7131(2007). [CrossRef] [PubMed]
  76. J. Lægsgaard and P. J. Roberts, “Theory of adiabatic pressure-gradient soliton compression in hollow-core photonic bandgap fibers,” Opt. Lett. 34, 3710–3712 (2009). [CrossRef] [PubMed]
  77. K. F. Mak, Max Planck Institute for the Science of Light, Günther-Scharowsky-Strasse 1, 91058 Erlangen, Germany, and J. C. Travers, W. Chang, P. Hölzer, J. Nold, N. Y. Joly, and P. St. J. Russell are preparing a manuscript to be called “Efficiency and tunability of UV-visible dispersive wave emission in gas-filled kagome photonic crystal fiber.”
  78. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11, 464–466(1986). [CrossRef] [PubMed]
  79. P. K. A. Wai, H. H. Chen, and Y. C. Lee, “Radiations by ‘solitons’ at the zero group-dispersion wavelength of single-mode optical fibers,” Phys. Rev. A 41, 426–439 (1990). [CrossRef] [PubMed]
  80. V. I. Karpman, “Radiation by solitons due to higher-order dispersion,” Phys. Rev. E 47, 2073–2082 (1993). [CrossRef]
  81. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607(1995). [CrossRef] [PubMed]
  82. S.-J. Im, A. Husakou, and J. Herrmann, “High-power soliton-induced supercontinuum generation and tunable sub-10 fs VUV pulses from kagome-lattice HC-PCFs,” Opt. Express 18, 5367–5374 (2010). [CrossRef] [PubMed]
  83. D. Anderson and M. Lisak, “Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides,” Phys. Rev. A 27, 1393–1398 (1983). [CrossRef]
  84. S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216(2005). [CrossRef]
  85. J. Limpert, S. Hädrich, J. Rothhardt, M. Krebs, T. Eidam, T. Schreiber, and A. Tünnermann, “Ultrafast fiber lasers for strong‐field physics experiments,” Laser Photon. Rev. 5, 634–646 (2011). [CrossRef]
  86. A. H. Zewail, “Laser femtochemistry,” Science 242, 1645–1653(1988). [CrossRef] [PubMed]
  87. S. A. Asher, “UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry. part 1,” Anal. Chem. 65, 59A–66A (1993). [CrossRef]
  88. N. Y. Joly, P. Hölzer, J. Nold, W. Chang, J. C. Travers, M. Labat, M.-E. Couprie, and P. St. J. Russell, “New tunable DUV light source for seeding free-electron lasers,” presented at the 33rd Free Electron Laser Conference (FEL 2011), Shanghai, China August 22–26 2011.
  89. P. G. O’Shea and H. P. Freund, “Free-electron lasers: status and applications,” Science 292, 1853–1858 (2001). [CrossRef] [PubMed]
  90. G. Lambert, T. Hara, D. Garzella, T. Tanikawa, M. Labat, B. Carre, H. Kitamura, T. Shintake, M. Bougeard, S. Inoue, Y. Tanaka, P. Salieres, H. Merdji, O. Chubar, O. Gobert, K. Tahara, and M.-E. Couprie, “Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light,” Nat. Phys. 4, 296–300 (2008). [CrossRef]
  91. J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12, 113001 (2010). [CrossRef]
  92. P. Sprangle, J. R. Peñano, and B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E 66, 046418(2002). [CrossRef]
  93. S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46, 1084–1090(1992). [CrossRef] [PubMed]
  94. S. P. Le Blanc, R. Sauerbrey, S. C. Rae, and K. Burnett, “Spectral blue shifting of a femtosecond laser pulse propagating through a high-pressure gas,” J. Opt. Soc. Am. B 10, 1801–1809 (1993). [CrossRef]
  95. W. M. Wood, C. W. Siders, and M. C. Downer, “Femtosecond growth dynamics of an underdense ionization front measured by spectral blueshifting,” IEEE Trans. Plasma Sci. 21, 20–33(1993). [CrossRef]
  96. M. Saleh, W. Chang, P. Hölzer, A. Nazarkin, J. C. Travers, N. Joly, P. St. J. Russell, and F. Biancalana, “Theory of photoionization-induced blueshift of ultrashort solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 107, 203902 (2011). [CrossRef] [PubMed]
  97. E. E. Serebryannikov and A. M. Zheltikov, “Ionization-induced effects in the soliton dynamics of high-peak-power femtosecond pulses in hollow photonic-crystal fibers,” Phys. Rev. A 76, 013820 (2007). [CrossRef]
  98. A. B. Fedotov, E. E. Serebryannikov, and A. M. Zheltikov, “Ionization-induced blueshift of high-peak-power guided-wave ultrashort laser pulses in hollow-core photonic-crystal fibers,” Phys. Rev. A 76, 053811 (2007). [CrossRef]
  99. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70, 1633–1713 (2007). [CrossRef]
  100. C. Rodríguez, Z. Sun, Z. Wang, and W. Rudolph, “Characterization of laser-induced air plasmas by third harmonic generation,” Opt. Express 19, 16115–16125 (2011). [CrossRef] [PubMed]
  101. V. M. Malkin, G. Shvets, and N. J. Fisch, “Fast compression of laser beams to highly overcritical powers,” Phys. Rev. Lett. 82, 4448–4451 (1999). [CrossRef]
  102. X. Shi, X. B. Wang, W. Jin, and M. S. Demokan, “Investigation of glow discharge of gas in hollow-core fibers,” Appl. Phys. B 91, 377–380 (2008). [CrossRef]
  103. B. Debord, R. Jamier, F. Gérôme, C. Boisse-Laporte, P. Leprince, O. Leroy, J.-M. Blondy, and F. Benabid, “UV light generation induced by microwave microplasma in hollow-core optical waveguides,” in CLEO:2011—Laser Science to Photonic Applications (Optical Society of America, 2011), paper CThD5.
  104. A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boyer, and C. K. Rhodes, “Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases,” J. Opt. Soc. Am. B 4, 595–601 (1987). [CrossRef]
  105. P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993). [CrossRef] [PubMed]
  106. T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent x-ray generation,” Nat. Photon. 4, 822–832 (2010). [CrossRef]
  107. P. B. Corkum, N. H. Burnett, and M. Y. Ivanov, “Subfemtosecond pulses,” Opt. Lett. 19, 1870–1872 (1994). [CrossRef] [PubMed]
  108. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006). [CrossRef] [PubMed]
  109. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617(2008). [CrossRef] [PubMed]
  110. O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97, 369–373 (2009). [CrossRef]
  111. E. E. Serebryannikov, D. von der Linde, and A. M. Zheltikov, “Phase-matching solutions for high-order harmonic generation in hollow-core photonic-crystal fibers,” Phys. Rev. E 70, 066619 (2004). [CrossRef]
  112. E. E. Serebryannikov, D. von der Linde, and A. M. Zheltikov, “Broadband dynamic phase matching of high-order harmonic generation by a high-peak-power soliton pump field in a gas-filled hollow photonic-crystal fiber,” Opt. Lett. 33, 977–979(2008). [CrossRef] [PubMed]
  113. S. L. Voronov, I. Kohl, J. B. Madsen, J. Simmons, N. Terry, J. Titensor, Q. Wang, and J. Peatross, “Control of laser high-harmonic generation with counterpropagating light,” Phys. Rev. Lett. 87, 133902 (2001). [CrossRef] [PubMed]
  114. H. Ren, A. Nazarkin, J. Nold, and P. St. J. Russell, “Quasi-phase-matched high harmonic generation in hollow core photonic crystal fibers,” Opt. Express 16, 17052–17059 (2008). [CrossRef] [PubMed]
  115. X. Jiang, T. G. Euser, A. Abdolvand, F. Babic, F. Tani, N. Y. Joly, J. C. Travers, and P. St. J. Russell, “Single-mode hollow-core photonic crystal fiber made from soft glass,” Opt. Express 19, 15438–15444 (2011). [CrossRef] [PubMed]
  116. G. L. Yudin and M. Y. Ivanov, “Nonadiabatic tunnel ionization: looking inside a laser cycle,” Phys. Rev. A 64, 013409(2001). [CrossRef]
  117. V. S. Popov, “Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory),” Phys. Usp. 47, 855–885 (2004). [CrossRef]
  118. M. Ammosov, N. Delone, and V. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited