OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 12 — Dec. 1, 2011
  • pp: A38–A44

Material slow light and structural slow light: similarities and differences for nonlinear optics [Invited]

Robert W. Boyd  »View Author Affiliations


JOSA B, Vol. 28, Issue 12, pp. A38-A44 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000A38


View Full Text Article

Enhanced HTML    Acrobat PDF (494 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

There are two standard methods for controlling the group velocity of light. One makes use of the dispersive properties associated with the resonance structure of a material medium. The other makes use of structural resonances, such as those that occur in photonic crystals. Both procedures have proved useful in a variety of situations. In this work we contrast these two approaches, especially in terms of issues such as the kinematics of energy flow though the system and the resulting implications for the behavior of nonlinear optical processes in these situations. Stated differently, this paper addresses the question of when nonlinear optical processes are enhanced through use of slow-light interactions and when they are not.

© 2011 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(260.2030) Physical optics : Dispersion
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

History
Original Manuscript: October 31, 2011
Manuscript Accepted: November 5, 2011
Published: December 2, 2011

Citation
Robert W. Boyd, "Material slow light and structural slow light: similarities and differences for nonlinear optics [Invited]," J. Opt. Soc. Am. B 28, A38-A44 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-12-A38


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Boyd and D. J. Gauthier, Slow and Fast Light, Progress in Optics (Elsevier, 2002), pp. 497–530.
  2. R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009). [CrossRef]
  3. P. W. Milonni, Fast Light, Slow Light, and Left-Handed Light (Institute of Physics Publishing, 2005).
  4. J. B. Khurgin and R. S. Tucker, eds., Slow Light: Science and Applications (CRC, 2008).
  5. R. Boyd, O. Hess, C. Denz, and E. Palpalakis, eds., “Slow lights,” J. Opt. 12, 100301 (2010). [CrossRef]
  6. R. W. Boyd, L. Hau, H. Wang, G. Eisenstein, S. Noda, and J. Moerk, eds., Feature Issue of JOSA B on “ Slow Light and Its Applications,” J. Opt. Soc. Am. B 25, SL1 (2008). [CrossRef]
  7. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1960).
  8. H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1984). See especially Section 11.3.
  9. Especially intriguing are the consequences of Eq. (5) for circumstances under which the group velocity vg becomes negative, implying a negative value of the Poynting vector magnitude S. In such circumstances, it is considered more useful to describe the situation in terms of an energy velocity rather than a group velocity. Details can be found in [3]. A negative value of the energy velocity would imply the flow of energy back toward the source. Some authors have argued that negative values of the energy velocity are physically meaningful [50], whereas others do not [3]. At present, there seems to be no complete understanding of this issue.
  10. S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1982). [CrossRef]
  11. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000). [CrossRef]
  12. S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990). [CrossRef]
  13. L. V. Hau, S. E. Harris, Z. Dutton, and C. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  14. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultra-slow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003). [CrossRef]
  15. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003). [CrossRef]
  16. G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895–897 (2006). [CrossRef]
  17. S. Franke-Arnold, G. Gibson, R. W. Boyd, and M. J. Padgett, “Rotary photon drag enhanced by a slow light medium,” Science 333, 65–67 (2011). [CrossRef]
  18. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999). [CrossRef]
  19. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229–5232 (1999). [CrossRef]
  20. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef]
  21. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed.(Princeton University, 2008).
  22. T. F. Krauss, R. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths,” Nature 383, 699–702 (1996). [CrossRef]
  23. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenovic, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010). [CrossRef]
  24. Z. Shi, “Fundamentals and applications of slow light,” PhD Dissertation (University of Rochester, 2010).
  25. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001). [CrossRef]
  26. Y. Vlasov, M. O’Boyle, H. F. Harmann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005). [CrossRef]
  27. T. Baba, “Slow light in photonic crystals,” Nature Photonics 2, 465–473 (2008). [CrossRef]
  28. M. L. Povinelli, S. Johnson, and J. D. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13, 7145–7159 (2005). [CrossRef]
  29. H. Gersen, T. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005). [CrossRef]
  30. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010). [CrossRef]
  31. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005). [CrossRef]
  32. L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express 15, 13129–13138 (2007). [CrossRef]
  33. H. G. Winful, “Energy storage in superluminal barrier tunneling: origin of the “Hartman effect”,” Opt. Express 10, 1491–1496 (2002).
  34. H. G. Winful, “Pulse compression in optical fiber filters,” Appl. Phys. Lett. 46, 527–529 (1985). [CrossRef]
  35. H. G. Winful, “Delay time and the Hartman effect in quantum tunneling,” Phys. Rev. Lett. 91, 260401 (2003). [CrossRef]
  36. H. G. Winful, “The meaning of group delay in barrier tunnelling: a re-examination of superluminal group velocities,” New J. Phys. 8, 101 (2006). [CrossRef]
  37. C. M. de Sterke and J. E. Sipe, “Coupled modes and the nonlinear Schrödinger equation,” Phys. Rev. A 42, 550–555 (1990). [CrossRef]
  38. S. Longhi, M. Marana, M. Belmonte, and P. Laporta, “Superluminal pulse propagation in linear and nonlinear photonic grating structures,” IEEE J. Sel. Top. Quantum Electron. 9, 4–16 (2003). [CrossRef]
  39. C. Monat, M. de Sterke, and B. J. Eggleton, “Slow light enhanced nonlinear optics in periodic structures,” J. Opt. 12, 104003 (2010). [CrossRef]
  40. S. Chin, I. Dicaire, J. Beugnot, S. Foaleng-Mafang, M. Gonzalez-Herraez, and L. Thvenaz, “Material slow light does not enhance Beer–Lambert absorption,” in Slow and Fast Light, OSA Technical Digest (CD) (Optical Society of America, 2009), paper SMA3.
  41. I. Dicaire, S. Chin, and L. Thvenaz, “Structural slow light can enhance Beer–Lambert absorption,” in Slow and Fast Light, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SLWC2.
  42. N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E 64, 056604 (2001). [CrossRef]
  43. P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photon. 4, 862–868 (2010). [CrossRef]
  44. C. Husko, S. Combri, Q. V. Tran, F. Raineri, C. W. Wong, and A. De Rossi, “Non-trivial scaling of self-phase modulation and three-photon absorption in III-V photonic crystal waveguides,” Opt. Express 17, 22442–22451 (2009). [CrossRef]
  45. C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18, 22915–22927 (2010). [CrossRef]
  46. M. Santagiustina, C. G. Someda, G. Vadala, S. Combri, and A. De Rossi, “Theory of slow light enhanced four-wave mixing in photonic crystal waveguides,” Opt. Express 18, 21024–21028 (2010). [CrossRef]
  47. J. Li, L. O’Faolain, I. H. Rey, and T. F. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express 19, 4458–4463 (2011). [CrossRef]
  48. C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18, 22915–22927 (2010). [CrossRef]
  49. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation,” Nat. Photon. 3, 206–210 (2009). [CrossRef]
  50. E. A. Bolda, J. C. Garrison, and R. Y. Chiao, “Optical pulse propagation at negative group velocities due to a nearby gain line,” Phys. Rev. A 49, 2938–2947 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited