OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 12 — Dec. 1, 2011
  • pp: A45–A55

Extreme nonlinear optics of nematic liquid crystals [Invited]

I. C. Khoo  »View Author Affiliations

JOSA B, Vol. 28, Issue 12, pp. A45-A55 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1516 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Laser induced director axis reorientation and order parameter changes in nematic liquid crystals give rise to extremely nonlinear optical responses characterized by nonlinear index coefficients that can reach values exceeding 10 3 cm 2 / Watt . An historical account and critical analyses of the theoretical backgrounds and experimental observations of several exemplary nonlinear optical phenomena are presented. Emphasis is placed on identifying and detailing the critical roles played by unique properties of nematic liquid crystals in these processes, including self-action effects, wave mixing, and switching phenomena for a variety of interaction geometries.

© 2011 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(160.5320) Materials : Photorefractive materials
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.5890) Nonlinear optics : Scattering, stimulated

Original Manuscript: September 22, 2011
Manuscript Accepted: October 20, 2011
Published: December 1, 2011

I. C. Khoo, "Extreme nonlinear optics of nematic liquid crystals [Invited]," J. Opt. Soc. Am. B 28, A45-A55 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Bloembergen, Nonlinear Optics (Benjamin, 1965).
  2. I. C. Khoo, Liquid Crystals, 2nd ed. (Wiley, 2007).
  3. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photon. 2, 60–200 (2010). [CrossRef]
  4. F. Reinitzer, “Beitrage zur Kenntniss des Cholesterins,” Wiener Monatschr, Fur Chem. 9, 421–441 (1888).
  5. See, for example, F. C. Frank, “On the theory of liquid crystals,” Discuss. Faraday Soc. 25, 19–28 (1958). [CrossRef]
  6. P. G. deGennes, The Physics of Liquid Crystals (Oxford University Press, 1974).
  7. I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471, 221–267 (2009). [CrossRef]
  8. P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20, 2170–2187 (1979). [CrossRef]
  9. M. I. Barnik, L. M. Blinov, A. M. Dorozhkin, and N. M. Shtykov, “Generation of the second optical harmonic induced by an electric field in nematic and smectic liquid crystals,” Sov. Phys. JETP 54, 935–937 (1981).
  10. I. Freund and P. M. Rentzepi, “Second-harmonic generation in liquid crystals,” Phys. Rev. Lett. 18, 393–394 (1967). [CrossRef]
  11. G. Durand and C.H. Lee, “On the origin of second harmonic generation of light in liquid crystals,” Molecular Crystals 5, 171–183 (1968). [CrossRef]
  12. S. Jen, N. A. Clark, P. S. Pershan, and E. B. Priestley, “Polarized Raman-scattering studies of orientational order in uniaxial liquid-crystalline phases,” J. Chem. Phys. 66, 4635–4661 (1977). [CrossRef]
  13. See, for example, G. K. L. Wong and Y. R. Shen, “Study of pretransitional behavior of laser-field-induced molecular alignment in isotropic nematic substances,” Phys. Rev. A 10, 1277–1284 (1974). [CrossRef]
  14. R. M. Herman and R. J. Serinko, “Nonlinear-optical processes in nematic liquid crystals near Freedericksz transitions,” Phys. Rev. A 19, 1757–1769 (1979). [CrossRef]
  15. I. C. Khoo and Shu-Lu Zhuang, “Nonlinear optical amplification in a nematic liquid crystal above the Freedericks transition,” Appl. Phys. Lett. 37, 3–4 (1980). [CrossRef]
  16. A. S. Zolotko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, and L. Chillage, “The effects of an optical-field on the nematic phase of the liquid-crystal OCBP,” JETP Lett. 32, 158–162 (1980).
  17. B. Y. Zeldovich, N. F. Pilipetskii, A. V. Sukhov, and N. V. Tabiryan, “Giant optical nonlinearity in the mesophase of a nematic liquid crystal,” JETP Lett. 31, 263–269 (1980).
  18. I. C. Khoo, “Optically induced molecular reorientation and third order nonlinear optical processes in nematic liquid crystals,” Phys. Rev. A 23, 2077–2081 (1981). [CrossRef]
  19. S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical field induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys. Rev. Lett. 47, 1411–1414 (1981). [CrossRef]
  20. I. C. Khoo, “Re-examination of the theory and experimental results of optically induced molecular reorientation and nonlinear diffractions in nematic liquid crystals: spatial frequency and temperature dependence,” Phys. Rev. A 27, 2747–2750 (1983). [CrossRef]
  21. H. L. Ong, “Optically induced Freedericksz transition and bistability in a nematic liquid crystal,” Phys. Rev. A 28, 2393–2407 (1983). [CrossRef]
  22. N. V. Tabiryan, A. V. Sukhov, and B. Y. Zeldovich, “Orientational optical nonlinearity of liquid-crystals,” Mol. Cryst. Liq. Cryst. 136, 1–139 (1986). [CrossRef]
  23. I. C. Khoo and R. Normandin, “The mechanism and dynamics of transient thermal grating diffraction in nematic liquid crystal films,” IEEE J. Quantum Electron. 21, 329–335 (1985). [CrossRef]
  24. H. Hsiung, L. P. Shi, and Y. R. Shen, “Transient laser-induced molecular-reorientation and laser-heating in a nematic liquid-crystal,” Phys. Rev. A 30, 1453–1460 (1984). [CrossRef]
  25. I. C. Khoo, “Nonlinear light scattering by laser and dc field induced molecular reorientations in nematic liquid crystal film,” Phys. Rev. A 25, 1040–1048 (1982). [CrossRef]
  26. I. Janossy and T. Kosa, “Influence of anthraquinone dyes on optical reorientation of nematic liquid crystals,” Opt. Lett. 17, 1183–1185 (1992). [CrossRef]
  27. H. Li, Y. Liang, and I. C. Khoo, “Transient laser induced orthogonal director-axis reorientation in dye-doped liquid crystal,” Mol. Cryst. Liq. Cryst. 251, 85–92 (1994). [CrossRef]
  28. I. C. Khoo, H. Li, and Y. Liang, “Optically induced extraordinarily large negative orientational nonlinearity in dye-doped-liquid crystal,” IEEE J. Quantum Electron. , 29, 1444–1447 (1993). [CrossRef]
  29. I. C. Khoo, H. Li, and Y. Liang, “Observation of orientational photorefractive effects in nematic liquid crystals,” Opt. Lett. 19, 1723–1725 (1994). See also [75]. [CrossRef]
  30. E. V. Rudenko and A. V. Sukhov, “Optically induced spatial charge separation in a nematic and the resultant orientational nonlinearity,” JETP 78, 875–882 (1994).
  31. I. C. Khoo, “Holographic grating formation in dye- and fullerene C60-doped nematic liquid crystal film,” Opt. Lett. 20, 2137–2139 (1995). [CrossRef]
  32. I. C. Khoo, “Optical-dc-field induced space charge fields and photorefractive-like holographic grating formation in nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 282, 53–66 (1996). [CrossRef]
  33. R. Macdonald, P. Meindl, G. Chilaya, and D. Sikharulidze, “Photo-excitation of space charge fields and reorientation of a nematic liquid crystal of discotic molecules,” Opt. Commun. 150, 195–200 (1998). [CrossRef]
  34. I. C. Khoo, S. Slussarenko, B. D. Guenther, and W. V. Wood, “Optically induced space charge fields, DC voltage, and extraordinarily large nonlinearity in dye-doped nematic liquid crystals,” Opt. Lett. 23, 253–255 (1998). [CrossRef]
  35. L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nonlinearity in dye-doped liquid crystals,” Opt. Commun. 233, 417–424 (2004). [CrossRef]
  36. L. Lucchetti, M. Gentili, and F. Simoni, “Effects leading to colossal optical nonlinearity in dye-doped liquid crystals, IEEE J. Sel. Top. Quantum Electron. 12, 422–430 (2006). [CrossRef]
  37. E. Brasselet, “Spin-orbit optical cross-phase-modulation,” Phys. Rev. A 82, 063836 (2010). [CrossRef]
  38. J. F. Henninot, J. F. Blach, and M. Warenghem, “Enhancement of dye fluorescence recovery in nematic liquid crystals using a spatial optical soliton,” J. Appl. Phys. 107, 113111 (2010). [CrossRef]
  39. I Jánossy, K. Fodor-Csorba, A. Vajda, and L. O. Palomares, “Light-induced spontaneous pattern formation in nematic liquid crystal cells,” Appl. Phys. Lett. 99, 111103 (2011). [CrossRef]
  40. K. R. Daly, S. Abbott, G. D’Alessandro, D. C. Smith, and M. Kaczmarek, “Theory of hybrid photorefractive plasmonic liquid crystal cells,” J. Opt. Soc. Am. 28, 1874–1881 (2011). [CrossRef]
  41. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18, 1–47 (2009). [CrossRef]
  42. V. Y. Reshetnyak, I. P. Pinkevych, G. Cook, D. R. Evans, and T. J. Sluckin, “Two-beam energy exchange in a hybrid photorefractive-flexoelectric liquid-crystal cell,” Phys. Rev. E 81, 031705 (2010). [CrossRef]
  43. L. De Sio, J. G. Cuennet, A. E. Vasdekis, and D. Psaltis, “All-optical switching in an optofluidic polydimethylsiloxane: liquid crystal grating defined by cast-molding,” Appl. Phys. Lett. 96, 131112 (2010). [CrossRef]
  44. L. Lucchetti, L. Criante, L. Criante, F. Bracalente, F. Aieta, and F. Simoni, “Optical trapping induced by reorientational nonlocal effects in nematic liquid crystals, Phys. Rev. E 84, 021702 (2011). [CrossRef]
  45. J. Beeckman, K. Neyts, and P. J. M. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 081202 (2011). [CrossRef]
  46. See, for example, M. Kwasny, A. Piccardi, A. Alberucci, M. Peccianti, M. Kaczmarek, M. A. Karpierz, and G. Assanto, “Nematicon-nematicon interactions in a medium with tunable nonlinearity and fixed nonlocality,” Opt. Lett. 36, 2566–2568 (2011) and references therein. [CrossRef]
  47. E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, “Electric field tuning of the Bragg peak in large-pore TiO2 inverse shell opals,” Phys. Rev. B 72, 233105 (2005). [CrossRef]
  48. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibers,” Opt. Express 11, 2589–2596 (2003). [CrossRef]
  49. A. d’Alessandro, R. Asquini, M. Trotta, G. Gilardi, R. Beccherelli, and I. C. Khoo, “All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide,” Appl. Phys. Lett. 97, 093302 (2010). [CrossRef]
  50. R. Caputo, A. Veltri, C. P. Umeton, and A. V. Sukhov, “Characterization of the diffraction efficiency of new holographic gratings with a nematic film-polymer-slice sequence structure,” J. Opt. Soc. Am. B 211939–1947 (2004). [CrossRef]
  51. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photon. 4, 676–685 (2010). [CrossRef]
  52. W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002). [CrossRef]
  53. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express 18, 9651–9657 (2010) and references therein. [CrossRef]
  54. N. V. Tabiryan and C. Umeton, “Surface-activated photorefractivity and electro-optic phenomena in liquid crystals, J. Opt. Soc. Am. B 15, 1912–1917 (1998). [CrossRef]
  55. I. C. Khoo, R. G. Lindquist, R. R. Michael, R. J. Mansfield, and P. Lopresti, “Dynamics of picosecond laser induced density, temperature and flow-reorientation effects in the mesophases of liquid crystals,” J. Appl. Phys. 69, 3853–3859 (1991). [CrossRef]
  56. H. J. Eichler, and R. Macdonald, “Flow alignment and inertial effects in picoseconds laser-induced reorientation phenomena of nematic liquid crystals,” Phys. Rev. Lett. 67, 2666–2669 (1991). [CrossRef]
  57. J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photon. 5, 234–238 (2011). [CrossRef]
  58. S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Laser-induced diffraction rings from a nematic liquid crystal film,” Opt. Lett. 6, 411–413 (1981).
  59. I. C. Khoo, “Theory of optically induced molecular reorientations and quantitative experiments on wave mixing and the self-focusing of light,” Phys. Rev. A 25, 1636–1644 (1982). [CrossRef]
  60. E. Santamato, and Y. R. Shen, “Field-curvature effect on the diffraction ring pattern of a laser-beam dressed by spatial self-phase modulation in a nematic film,” Opt. Lett. 9, 564–566 (1984). [CrossRef]
  61. I. C. Khoo, J. Y. Hou, T. H. Liu, P. Y. Yan, R. R. Michael, and G. M. Finn, “Transverse self-phase modulation and bistability in the transmission of a laser beam through a nonlinear thin film,” J. Opt. Soc. Am. B 4, 886–891 (1987). [CrossRef]
  62. I. C. Khoo, M. V. Wood, B. D. Guenther, M.-Y. Shih, P. H. Chen, Z. Chen, and X. Zhang, “Liquid crystal film and nonlinear optical liquid cored fiber array for ps-cw frequency agile laser optical limiting application,” Opt. Express 2, 471–482 (1998). [CrossRef]
  63. I. C. Khoo, M. V. Wood, M. Y. Shih, and P. H. Chen, “Extremely nonlinear photosensitive liquid crystals for image sensing and sensor protection,” Opt. Express 4, 432–442 (1999). [CrossRef]
  64. I. C. Khoo, J. Y. Hou, T. H. Liu, P. Y. Yan, R. R. Michael, and G. M. Finn, “Transverse self-phase modulation and bistability in the transmission of a laser beam through a nonlinear thin film,” J. Opt. Soc. Am. B 4, 886–891 (1987). [CrossRef]
  65. V. Carbone, G. Cipparrone, C. Versace, C. Umeton, and R. Bartolino, “Multifractal structure and intermittency of laser-generated turbulence in nematic liquid crystals, Phys. Rev. E 54, 6948–6951 (1996). [CrossRef]
  66. F. T. Arecchi, S. Boccaletti, and P. L. Ramazza, “Pattern formation and competition in nonlinear optics,” Phys. Rep. 318, 1–83 (1999). [CrossRef]
  67. C. Toniolo, G. Russo, S. Residori, and C. Tresser “A phenomenological approach to normal form modeling: a case study in laser induced nematodynamics,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 15, 3547–3566 (2005). [CrossRef]
  68. M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. P. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000). [CrossRef]
  69. C. Conti, M. Peccianti, and G. Assanto, “Observation of optical spatial solitons in a highly nonlocal medium,” Phys. Rev. Lett. 92, 113902 (2004). [CrossRef]
  70. A. Piccardi, A. Alberucci, U. Bortolozzo, S. Residori, and G. Assanto, “Readdressable interconnects with spatial soliton waveguides in liquid crystal light valves,” IEEE Photon. Technol. Lett. 22, 694–696 (2010). [CrossRef]
  71. Y. V. Izdebskaya, V. G. Shvedov, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Soliton bending and routing induced by interaction with curved surfaces in nematic liquid crystals,” Opt. Lett. 35, 1692–1694 (2010). [CrossRef]
  72. I. C. Khoo, J. H. Park, and J. D. Liou, “Theory and experimental studies of all-optical transmission switching in a twist-alignment dye-doped nematic liquid crystal,” J. Opt. Soc. Am. B 25, 1931–1937 (2008) and references therein. [CrossRef]
  73. I. C. Khoo, J. Liou, and M. V. Stinger, “Microseconds-nanoseconds all-optical switching of visible-near infrared (0.5 μm–1.55 μm) lasers with dye-doped nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 527, 109–118 (2010). [CrossRef]
  74. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, L. Hoke, D. M. Steeves, and B. R. Kimball, “Azobenzene liquid crystalline materials for efficient optical switching with pulsed and/or continuous wave laser beams,” Opt. Express 18, 8697–8704 (2010). [CrossRef]
  75. A. Shishido, O. Tsutsumi, A. Kanazawa, T. Shiono, T. Ikeda, and N. Tamai, “Rapid optical switching by means of photoinduced change in refractive index of azobenzene liquid crystals detected by reflection-mode analysis,” J. Am. Chem. Soc. 119, 7791–7796 (1997). [CrossRef]
  76. B. Ya. Zeldovich, S. K. Merzlikin, N. F. Pilipetskii, and A. V. Sukhov, “Observation of stimulated forward orientational light scattering in a planar nematic liquid crystal,” JETP Lett. 41, 514–517 (1985).
  77. I. C. Khoo and J. Ding, “All-optical cw laser polarization conversion at 1.55 micron by two beam coupling in nematic liquid crystal film,” Appl. Phys. Lett. 81, 2496–2498 (2002). [CrossRef]
  78. I. C. Khoo and Y. Liang, “Stimulated orientational and thermal scatterings and self-starting optical phase conjugation with nematic liquid crystals,” Phys. Rev. E 62, 6722–6733 (2000). [CrossRef]
  79. P. Etchegoin and R. T. Phillips, “Stimulated orientational scattering and third-order nonlinear optical processes in nematic liquid crystals,” Phys. Rev. E 55, 5603–5612 (1997). [CrossRef]
  80. I. C. Khoo, “Orientational photorefractive effects in nematic liquid crystal film,” IEEE J. Quantum Electron. 32, 525–534 (1996). [CrossRef]
  81. I. C. Khoo, K. Chen, and Y. Z. Williams, “Orientational photorefractive effect in undoped and CdSe nanorods doped nematic liquid crystal—bulk and interface contributions,” IEEE J. Sel. Top. Quantum Electron. 12, 443–450 (2006). [CrossRef]
  82. I. C. Khoo, J. Ding, Y. Zhang, K. Chen, and A. Diaz, “Supra-nonlinear photorefractive response of single-wall carbon nanotube- and C60-doped nematic liquid crystals,” Appl. Phys. Lett. 82, 3587–3589 (2003). [CrossRef]
  83. H. Ono and N. Kawatsuki, “Orientational photorefractive effects observed in polymer-dispersed liquid crystals, Opt. Lett. 22, 1144–1146 (1997). [CrossRef]
  84. See, for example, G. Cook, V. Y. Reshetnyak, R. F. Ziolo, S. A. Basun, P. P. Banerjee, and D. R. Evans, “Asymmetric Freedericksz transitions from symmetric liquid crystal cells doped with harvested ferroelectric nanoparticles,” Opt. Express 18, 17339–17345 (2010) and references quoted therein. [CrossRef]
  85. A. Emoto, K. Maeda, K. Tanaka, N. Kawatsuki, and H. Ono, “Orientational photoreactive effects in nematic liquid crystals on silver sulfide thin films,” Appl. Phys. Lett. 97, 041919 (2010). [CrossRef]
  86. W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49–50 (1991). [CrossRef]
  87. I. C. Khoo, M.-Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE 87, 1897–1911 (1999). [CrossRef]
  88. See also A. V. Dubtsov, S. V. Pasechnik, A. D. Kiselev, D. V. Shmeliova, and V. G. Chigrinov, “Electrically assisted light-induced azimuthal gliding of the nematic liquid-crystal easy axis on photoaligned substrates,” Phys. Rev. E 82, 011702 (2010) and the references quoted therein. [CrossRef]
  89. See, for example, N. Litchinitser and V. M. Shalaev, “Metamaterials: transforming theory into reality,” J. Opt. Soc. Am. B 26, B161–169 (2009) and the references therein. [CrossRef]
  90. V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, “Linear and nonlinear wave propagation in negative refraction metamaterials,” Phys. Rev. B 69, 165112 (2004). [CrossRef]
  91. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon sub-wavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  92. I. C. Khoo, D. H. Werner, X. Liang, A. Diaz, and B. Weiner, “Nano-sphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and Terahertz regimes,” Opt. Lett. 31, 2592–2594 (2006). [CrossRef]
  93. I. C. Khoo, A. Diaz, J. Liou, M. V. Stinger, J. Huang, and Y. Ma, “Liquid crystals tunable optical metamaterials,” IEEE J. Sel. Top. Quantum Electron. 16, 410–417 (2010). [CrossRef]
  94. G. Pawlik, W. Walasik, A. C. Mitus, and I. C. Khoo, “Large gradients of refractive index in nanosphere dispersed liquid crystal metamaterial with inhomogeneous anchoring: Monto Carlo study,” Opt. Mater. 33, 1459–1463 (2011). [CrossRef]
  95. G. Pawlik, M. Jarema, W. Walasik, A. C. Mitus, and I. C. Khoo, “Field induced inhomogeneous index distribution of a nano-dispersed nematic liquid crystal near the Freedericksz transition: Monte Carlo studies,” J. Opt. Soc. Am. B 27, 567–576 (2010). [CrossRef]
  96. O. D. Lavrentovich, “Liquid crystals, photonic crystals, metamaterials, and transformation optics,” Proc. Natl. Acad. Sci. USA 108, 5143–5144 (2011). [CrossRef]
  97. S. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett. 95, 033115 (2009). [CrossRef]
  98. J. Li, Y. Ma, Y. Gu, Q. Gong, and I. C. Khoo, “Large spectral tunability of narrow geometric resonances of periodic arrays of metallic nanoparticles in a nematic liquid crystal,” Appl. Phys. Lett. 98, 213101 (2011). [CrossRef]
  99. H. Qingzhen, Y. Zhao, B. K. Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011). [CrossRef]
  100. B. Zhang, Y. Zhao, Q. Hao, I. C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011). [CrossRef]
  101. Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010). [CrossRef]
  102. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett. 8, 281–286 (2008). [CrossRef]
  103. S. Sridevi, S. K. Prasad, G. G. Nair, V. D’Britto, and B. L. V. Prasad, “Enhancement of anisotropic conductivity, elastic, and dielectric constants in a liquid crystal-gold nanorod system,” Appl. Phys. Lett. 97, 151913 (2010). [CrossRef]
  104. N. R. Jana, L. A. Gearheart, S. O. Obare, C. J. Johnson, K. J. Edler, S. Mann, and C. J. Murphy, “Liquid crystalline assemblies of ordered gold nanorods,” J. Mater. Chem. 12, 2909–2912 (2002). [CrossRef]
  105. P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. H. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett. 5, 1978–1981 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited