OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 12 — Dec. 1, 2011
  • pp: A56–A66

Surface nonlinear optics [Invited]

Y. R. Shen  »View Author Affiliations


JOSA B, Vol. 28, Issue 12, pp. A56-A66 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000A56


View Full Text Article

Enhanced HTML    Acrobat PDF (627 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nonlinear optics has made giant strides in the past 50 years. It has impacted broadly on many disciplines of science and technology. Surface science is one of them because nonlinear optics provides unique opportunities to probe surfaces and interfaces. As surface and interface properties become increasingly important in science and technology, so does nonlinear optics as a surface characterizing tool. This article gives a brief review of the field. We reminisce on the early years of surface nonlinear optics and its subsequent development as surface analytical probes. We discuss how surface nonlinear optics, with emphasis on second harmonic and sum frequency generation, has influenced various areas of surface science and how the impact can be extended in the future.

© 2011 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics

History
Original Manuscript: September 22, 2011
Manuscript Accepted: October 31, 2011
Published: December 2, 2011

Citation
Y. R. Shen, "Surface nonlinear optics [Invited]," J. Opt. Soc. Am. B 28, A56-A66 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-12-A56


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961). [CrossRef]
  2. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  3. N. Bloembergen and P. S. Pershan, “Light waves at the bondary of nolinear media,” Phys. Rev. 128, 606–622 (1962). [CrossRef]
  4. J. Ducuing and N. Bloembergen, “Observation of reflected light harmonics at the boundary of piezoelectric crystals,” Phys. Rev. Lett. 10, 474–476 (1963). [CrossRef]
  5. R. K. Chang, C. H. Lee, and N. Bloembergen, “Second-harmonic generation of light in reflection from media with inversion symmetry,” Phys. Rev. Lett. 16, 986–989 (1965).
  6. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev. 174, 813–822 (1968). [CrossRef]
  7. J. M. Chen, J. R. Bower, C. S. Wang, and C. H. Lee, “Optical second-harmonic generation from sub monolayer Na-covered Ge surfaces,” Opt. Commun. 9, 132–134 (1973).
  8. A. Sommerfeld, “Propagation of Waves in Wireless Telegraphy,” Ann. Phys. 28, 665–736 (1909). [CrossRef]
  9. E. Kretschmann, “Determination of optical constants of metals by excitation of surface plasmons,” Z. Phys. 241, 313–324 (1971). [CrossRef]
  10. A. Otto, “Excitation of nonradiative surface plasma waves in silver by method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968). [CrossRef]
  11. H. J. Simon, D. E. Mitchell, and J. G. Watson, “Optical second-harmonic generation with surface plasmons in siliver films,” Phys. Rev. Lett. 33, 1531–1534 (1974). [CrossRef]
  12. F. DeMartini, F. G. Giuliani, M. Mataloni, E. Palange, and Y. R. Shen, “Study of surface polaritons in GaP by optical four-wave mixing,” Phys. Rev. Lett. 37, 440–443 (1976). [CrossRef]
  13. F. DeMartini, M. Colocci, S. E. Kohn, and Y. R. Shen, “Nonlinear optical exicitation of surface exciton polaritons in ZnO,” Phys. Rev. Lett. 38, 1223–1226 (1977). [CrossRef]
  14. See, for example, W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  15. M. Fleishman, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26, 163–166 (1974). [CrossRef]
  16. T. E. Furtak and J. Reyes, “A critical analysis of theoretical-models for the giant Raman effect from adsorbed molecules,” Surf. Sci. 93, 351–382 (1980). [CrossRef]
  17. C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface-enhanced second-harmonic generation,” Phys. Rev. Lett. 46, 145–148 (1981). [CrossRef]
  18. C. K. Chen, T. F. Heinz, D. Ricard, and Y. R. Shen, “Detection of molecular monolayers by optical second-harmonic generation,” Phys. Rev. Lett. 46, 1010–1012 (1981). [CrossRef]
  19. G. T. Boyd, Y. R. Shen, and T. W. Hansch, “Second-harmonic generation from sub-monolayer molecular adsorbates using a cw diode laser—Maui surface experiment,” in Laser Spectroscopy VII, ed. by T. W. Hansch and Y. R. Shen (Springer Verlag, 1985), p. 322–323.
  20. C. C. Wang, “Second-harmonic generation of light at the boundary of an isotropic medium,” Phys. Rev. 178, 1457–1460 (1969). [CrossRef]
  21. P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B 33, 8254–8263 (1986).
  22. P. Guyot-Sionnest and Y. R. Shen, “Local and nonlocal surface nonlinearities for surface optical second-harmonic generation,” Phys. Rev. B 35, 4420–4426 (1987).
  23. J. E. Sipe, V. Mizrahi, and G. I. Stegeman, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B 35, 1129–1141 (1987).
  24. T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen, “Spectroscopy of molecular monolayers by resonant second-harmonic generation,” Phys. Rev. Lett. 48, 478–481 (1982). [CrossRef]
  25. H. W. K. Tom, T. F. Heinz, and Y. R. Shen, “Determination of molecular orientation of monolayer adsorbates by optical second-harmonic generation,” Phys. Rev. A 28, 1883–1885 (1983). [CrossRef]
  26. H. W. K. Tom, C. M. Mate, X. D. Zhu, J. E. Crowell, T. F. Heinz, G. A. Somorjai, and Y. R. Shen, “Surface studies by optical second harmonic generation: the adsorption of O2, CO and sodium on the Rh(111) surface,” Phys. Rev. Lett. 52, 348–351 (1984). [CrossRef]
  27. H. W. K. Tom, X. D. Zhu, Y. R. Shen, and G. A. Somorjai, “Investigation of the Si(111) (7*7) surface by 2nd-harmonic generation—oxidation and the effects of surface phosphorus,” Surf. Sci. 167, 167–176 (1986). [CrossRef]
  28. Th. Rasing, Y. R. Shen, M. W. Kim, and S. Grubb, “Observation of molecular reorientation at a two-dimensional-liquid phase transition,” Phys. Rev. Lett. 55, 2903–2906 (1985). [CrossRef]
  29. G. Berkovic, Th. Rasing, and Y. R. Shen, “Study of monolayer polymerization using nonlinear optics,” J. Chem. Phys. 85, 7374–7376 (1986). [CrossRef]
  30. G. L. Richmond, H. M. Rojhantalab, J. M. Robinson, and V. L. Shannon, “Experiments on optical second-harmonic generation as a surface probe of electrodes,” J. Opt. Soc. Am. B 4, 228–236 (1987). [CrossRef]
  31. T. F. Heinz, F. J. Himpsel, E. Palange, and E. Burstein, “Electronic transitions at the CaF2/Si(111) interface probed by resonant three-wave mixing spectroscopy,” Phys. Rev. Lett. 63, 644–647 (1989). [CrossRef]
  32. K. Bhattachacharyya, E. V. Sitzmann, and K. B. Eisenthal, “Study of chemical reactions by surface second harmonic generation: p-nitrophenol at the airCwater interface,” J. Chem. Phys. 87, 1442–1443 (1987). [CrossRef]
  33. E. V. Sitzmann and K. B. Eisenthal, “Picosecond dynamics of a chemical reaction at the air-water interface studied by surface second harmonic generation,” J. Phys. Chem. 92, 4579–4580 (1988). [CrossRef]
  34. P. Guyot-Sionnest, H. Hsiung, and Y. R. Shen, “Surface polar ordering in a liquid crystal observed by optical second-harmonic generation,” Phys. Rev. Lett. 57, 2963–2966 (1986). [CrossRef]
  35. C. V. Shank, R. Yen, and C. Hirlimann, “Femtosecond-time-resolved surface structural dynamics of optically excited silicon,” Phys. Rev. Lett. 51, 900–902 (1983). [CrossRef]
  36. R. T. Boyd, Y. R. Shen, and T. W. Hansch, “Continuous-wave second harmonic generation as a surface microprobe,” Opt. Lett. 11, 97–99 (1986). [CrossRef]
  37. K. A. Shultz and E. G. Seebauer, “Surface diffusion of Sb on Ge(111) monitored quantitatively with optical second harmonic microscopy,” J. Chem. Phys. 97, 6958–6967 (1992). [CrossRef]
  38. R. P. Pan and Y. R. Shen, “Optical second harmonic generation as a probe for surface magnetization,” J. Chinese Phys. 25, 175–177 (1987).
  39. R. P. Pan, H. D. Wei, and Y. R. Shen, “Optical second-harmonic generation from magnetized surfaces,” Phys. Rev. B 39, 1229–1234 (1989).
  40. J. Reif, J. C. Zink, C. M. Schneider, and J. Kirschner, “Effects of surface magnetism on optical second harmonic generation,” Phys. Rev. Lett. 67, 2878–2881 (1991). [CrossRef]
  41. T. F. Heinz, F. J. Himipsel, E. Palange, and E. Burstein, “Electronic transitions at the CaF2/Si(111) interface probed by resonant three-wave mixing spectroscopy,” Phys. Rev. Lett. 63, 644–647 (1989). [CrossRef]
  42. X. D. Zhu, H. Suhr, and Y. R. Shen, “Surface vibrational spectroscopy by infrared-visible sum frequency generation,” Phys. Rev. B 35, 3047–3050 (1987).
  43. J. H. Hunt, P. Guyot-Sionnest, and Y. R. Shen, “Observation of C-H stretch vibrations of monolayers of molecules optical sum-frequency generation,” Chem. Phys. Lett. 133, 189–192 (1987). [CrossRef]
  44. R. Superfine, P. Guyot-Sionnest, J. H. Hunt, C. T. Kao, and Y. R. Shen, “Surface vibrational spectroscopy of molecular adsorbates on metals and semiconductors by infrared-visible sum-frequency generation,” Surf. Sci. 200, L445–L450 (1988). [CrossRef]
  45. A. L. Harris, C. E. D. Chidsey, N. J. Levinos, and D. N. Loiacono, “Monolayer vibrational spectroscopy by infrared-visible sum frequency generation at metal and semiconductor surfaces,” Chem. Phys. Lett. 141, 350–356 (1987). [CrossRef]
  46. P. Guyot-Sionnest, J. H. Hunt, and Y. R. Shen, “Sum-frequency vibrational spectroscopy of a Langmuir film: Study of molecular orientation of a two-dimensional system,” Phys. Rev. Lett. 59, 1597–1600 (1987). [CrossRef]
  47. R. Superfine, J. Y. Huang, and Y. R. Shen, “Experimental determination of the sign of molecular diople-moment derivatives—an infrared visible sum-frequency generation abosolute phase mesurement study,” Chem. Phys. Lett. 172, 303–306(1990). [CrossRef]
  48. R. Superfine, J. Y. Huang, and Y. R. Shen, “Nonlinear optical studies of the pure liquid/vapor interface: Vibrational spectra and polar ordering,” Phys. Rev. Lett. 66, 1066–1069 (1991). [CrossRef]
  49. Q. Du, R. Superfine, E. Freysz, and Y. R. Shen, “Vibrational spectroscopy of water at the vapor/water interface,” Phys. Rev. Lett. 70, 2313–2316 (1993). [CrossRef]
  50. Q. Du, E. Freysz, and Y. R. Shen, “Vibrational spectra of water molecules at quartz/water interfaces,” Phys. Rev. Lett. 72, 238–241 (1994). [CrossRef]
  51. Q. Du, E. Freysz, and Y. R. Shen, “Surface vibrational spectroscopic studies of hydrogen-bonding and hydrophobicity,” Science 264, 826–828 (1994). [CrossRef]
  52. Y. R. Shen, “A few selected applications of surface nonlinear optical spectroscopy,” Proc. Natl. Acad. Sci. 93, 12104–12111 (1996).
  53. L. J. Richter, T. P. Petralli, and J. C. Stephenson, “Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses,” Opt. Lett. 23, 1594–1596 (1998). [CrossRef]
  54. K. A. Briggman, J. C. Stephenson, W. E. Wallace, and L. J. Richter, “Absolute molecular orientational distribution of the polystyrene surface,” J. Phys. Chem. B 105, 2785–2791(2001). [CrossRef]
  55. N. Ji, V. Ostroverkhov, C. S. Tian, and Y. R. Shen, “Characterization of vibrational resonances of water-vapor interfaces by phase-sensitive sum-frequency spectroscopy,” Phys. Rev. Lett. 100, 096102-1–096102-4 (2008).
  56. I. V. Stiopkin, H. D. Jayathilake, A. N. Bordenyuk, and A. V. Benderskii, “Heterodyne-detected vibrational sum frequency generation spectroscopy,” J. Am. Chem. Soc. 130, 2271–2275 (2008). [CrossRef]
  57. S. Nihonyanagi, S. Yamaguchi, and T. J. Tahara, “Direct evidence for orientational flip-flop of water molecules at charged interfaces: A heterodyne-detected vibrational sum frequency generation study,” J. Chem. Phys. 130, 204704-1–204704-5 (2009). [CrossRef]
  58. P. Guyot-Sionnest and Y. R. Shen, “Bulk contribution in surface second-harmonic generation,” Phys. Rev. B 38, 7985–7989 (1988).
  59. H. Held, A. I. Lvovsky, X. Wei, and Y. R. Shen, “Bulk contribution from isotropic media in surface sum-frequency generation,” Phys. Rev. B 66, 205110-1–205110-7 (2002).
  60. P. Guyot-Sionnest, R. Superfine, J. H. Hunt, and Y. R. Shen, “Vibrational spectroscopy of a silane monolayer at air solid and liquid solid interfaces using sum-frequency generation,” Chem. Phys. Lett. 144, 1–5 (1988). [CrossRef]
  61. X. Wei, X. Zhuang, S. C. Hong, T. Goto, and Y. R. Shen, “Sum-frequency vibrational spectroscopic study of a rubbed polymer surface,” Phys. Rev. Lett. 82, 4256–4259 (1999). [CrossRef]
  62. X. Wei, S. C. Hong, X. Ahuang, T. Goto, and Y. R. Shen, “Nonlinear optical studies of liquid crystal alignment on a rubbed polyvinyl alcohol surface,” Phys. Rev. E 62, 5160–5172(2000). [CrossRef]
  63. X. Zhuang, P. B. Miranda, D. Kim, and Y. R. Shen, “Mapping molecular orientation and conformation at interfaces by surface nonlinear optics,” Phys. Rev. B 59, 12632–12640 (1999).
  64. G. R. Bell, C. D. Bain, and R. N. Ward, “Sum-frequency vibrational spectroscopy of soluble surfactants at the air/water interface,” J. Chem. Soc., Faraday Trans. 92, 515–523 (1996). [CrossRef]
  65. G. R. Bell, S. Manning-Benson, and C. D. Bain, “Effect of chain length on the structure of monolayers of alkyltrimethylammonium bromides (C_nTABs) at the air-water interface,” J. Phys. Chem. B 102, 218–222 (1998). [CrossRef]
  66. M. C. Messmer, J. C. Conboy, and G. Richmond, “Observation of molecular ordering at the liquid-liquid interface by resonant sum frequency generation,” J. Am. Chem. Soc. 117, 8039–8040 (1995). [CrossRef]
  67. J. C. Conboy, M. C. Messmer, and G. L. Richmond, “Investigation of surfactant conformation and order at the liquid-liquid interface by total internal reflection sum-frequency vibrational spectroscopy,” J. Phys. Chem. 100, 7617–7622 (1996). [CrossRef]
  68. J. C. Conboy, M. C. Messmer, and G. Richmond, “Dependence of alkyl chain conformation of simple ionic surfactants on head group functionality as studied by vibrational sum-frequency spectroscopy,” J. Phys. Chem. B 101, 6724–6733 (1997). [CrossRef]
  69. R. N. Ward, P. B. Davies, and C. D. Bain, “Orientation of surfactants adsorbed on a hydrophobic surface,” J, Phys. Chem. 97, 7141–7143 (1993).
  70. R. N. Ward, D. C. Duffy, P. B. Davies, and C. D. Bain, “Sum-frequency spectroscopy of surfactants adsorbed at a flat hydrophobic surface,” J. Phys. Chem. 98, 8536–8542 (1994). [CrossRef]
  71. C. D. Bain, P. B. Davies, and R. N. Ward, “In-situ sum-frequency spectroscopy of sodium dodecyl sulfate and dodecanol coadsorbed at a hydrophobic surface,” Langmuir 10, 2060–2063 (1994). [CrossRef]
  72. X. Su, P. Cremer, Y. R. Shen, and G. A. Somorjai, “Pressure dependence (10−10C700 Torr) of the vibrational spectra of adsorbed CO on Pt(111) studied by sum frequency generation,” Phys. Rev. Lett. 77, 3858–3860 (1996). [CrossRef]
  73. X. Su, P. S. Cremer, Y. R. Shen, and G. A. Somorjai, “High-pressure CO oxidation on Pt(111) monitored with infrared-visible sum frequency generation (SFG),” J. Am. Chem. Soc. 119, 3994–4000 (1997). [CrossRef]
  74. P. S. Cremer, X. Su, Y. R. Shen, and G. A. Somorjai, “Hydrogenation and dehydrogenation of propylene on Pt(111) studied by sum frequency generation from UHV to atmospheric pressure,” J. Phys. Chem. 100, 16302–16309 (1996). [CrossRef]
  75. G. A. Somorjai and G. Rupprechter, “Molecular studies of catalytic reactions on crystal surfaces at high pressures and high temperatures by infrared-visible sum frequency generation (SFG) surface vibrational spectroscopy,” J. Phys. Chem. B 103, 1623–1638 (1999). [CrossRef]
  76. P. B. Miranda and Y. R. Shen, “Liquid interfaces: A study by sum-frequency vibrational spectroscopy,” J. Phys. Chem. B 103, 3292–3307 (1999). [CrossRef]
  77. P. B. Miranda, Q. Du, and Y. R. Shen, “Interaction of water with a fatty acid Langmuir film,” Chem. Phys. Lett. 286, 1–8(1998). [CrossRef]
  78. C. D. Stanners, Q. Du, R. P. Chin, P. Cremer, G. A. Somorjai, and Y. R. Shen, “Polar ordering at the liquid-vapor interface of N-alcohols(C-1-C-8),” Chem. Phys. Lett. 232, 407–413(1995). [CrossRef]
  79. G. A. Sefler, Q. Du, P. B. Miranda, and Y. R. Shen, “Surface crystallization of liquid N-alkanes and alcohol monolayers studied by surface vibrational spectroscopy,” Chem. Phys. Lett. 235, 347–354 (1995). [CrossRef]
  80. D. Zhang, J. H. Gunow, K. B. Eisenthal, and T. F. Heinz, “Sudden structural change at an air/binary liquid interface: Sum frequency study of the air/acetonitrileCwater interface,” J. Chem. Phys. 98, 5099–5101 (1993). [CrossRef]
  81. K. Wolfrum, H. Graener, and A. Laubereau, “Sum-frequency vibrational spectroscopy at the liquid air interface of methanol-water solutions,” Chem. Phys. Lett. 213, 41–46 (1993). [CrossRef]
  82. J. Y. Huang and M. H. Wu, “Nonlinear optical studies of binary mixtures of hydrogen bonded liquids,” Phys. Rev. E 50, 3737–3746 (1994). [CrossRef]
  83. D. Zhang, Y. R. Shen, and G. A. Somorjai, “Studies of surface structures and compositions of polyethylene and polypropylene by IR plus visible sum frequency vibrational spectroscopy,” Chem. Phys. Lett. 281, 394–400 (1997). [CrossRef]
  84. D. Zhang, D. H. Gracias, R. Ward, M. Gauchler, Y. Tian, Y. R. Shen, and G. A. Somorjai, “Surface studies of polymer blends by sum frequency vibrational spectroscopy, atomic force microscopy, and contact angle goniometry,” J. Phys. Chem. B 102, 6225–6230 (1998). [CrossRef]
  85. Z. Chen, R. Ward, Y. Tian, A. S. Eppler, Y. R. Shen, and G. A. Somorjai, “Surface composition of biopolymer blends biospan-SP/phenoxy and biospan-F/phenoxy observed with SFG, XPS, and contact angle goniometry,” J. Phys. Chem. B 103, 2935–2942 (1999). [CrossRef]
  86. See the review article by Z. Chen, Y. R. Shen, and G. A. Somorjai, “Studies of polymer surfaces by sum frequency generation vibrational spectroscopy,” Annu. Rev. Phys. Chem. 53, 437–465 (2002). [CrossRef]
  87. R. P. Chin, J. Y. Huang, Y. R. Shen, T. J. Chuang, and H. Seki, “Interaction of atomic hydrogen with the diamond C(111) surface studied by infrared-visible sum-frequency-generation spectroscopy,” Phys. Rev. B 52, 5985–5995 (1995).
  88. X. Wei, P. B. Miranda, and Y. R. Shen, “Surface vibrational spectroscopic study of surface melting of ice,” Phys. Rev. Lett. 86, 1554–1557 (2001). [CrossRef]
  89. T. Stehlin, M. Feller, P. Guyot-Sionnest, and Y. R. Shen, “Optical second-harmonic generation as a surface probe for noncentrosymmetric media,” Opt. Lett. 13, 389–391 (1988). [CrossRef]
  90. W. T. Liu and Y. R. Shen, “Surface vibrational modes of α-Quartz (0001) probed by sum-frequency spectroscopy,” Phys. Rev. Lett. 101, 016101-1–016101-4 (2008).
  91. Y. M. Chang, L. Xu, and H. W. K. Tom, “Observation of coherent surface optical phonon oscillations by time-resolved surface second-harmonic generation,” Phys. Rev. Lett. 78, 4649–4652 (1997). [CrossRef]
  92. Y. M. Chang, L. Xu, and H. W. K. Tom, “Coherent phonon spectroscopy of GaAs surfaces using time-resolved second harmonic generation,” Chem. Phys. 251, 283–308(2000). [CrossRef]
  93. V. Vogel, “What do nonlinear optical techniques have to offer the biosciences?” Current opinion in colloid and interface science 1, 257–263 (1996). [CrossRef]
  94. J. Wang, S. M. Buck, M. A. Even, and Z. Chen, “Molecular responses of proteins at different interfacial environments detected by sum frequency generation vibrational spectroscopy,” J. Am. Chem. Soc. 124, 13302–13305 (2002). [CrossRef]
  95. J. Wang, S. M. Buck, and Z. Chen, “Sum frequency generation vibrational spectroscopy studies on protein adsorption,” J. Phys. Chem. B 106, 11666–11672 (2002). [CrossRef]
  96. J. S. Salafsky and K. B. Eisenthal, “Second harmonic spectroscopy: detection and orientation of molecules at a biomembrane interface,” Chem. Phys. Lett. 319, 435–439(2000). [CrossRef]
  97. Y. Liu, E. C. Y. Yan, and K. B. Eisenthal, “Effect of cholesterol on molecular transport of organic cations across liposome bilayers probed by second harmonic generation,” Biophys. J. 79, 898–903 (2000). [CrossRef]
  98. Y. Liu, E. C. Y. Yan, and K. B. Eisenthal, “Effects of bilayer surface charge density on molecular adsorption and transport across liposome bilayers,” Biophys. J. 80, 1004–1012 (2001). [CrossRef]
  99. T. Pons, L. Moreaux, and J. Mertz, “Photoinduced flip-flop of amphiphilic molecules in lipid nilayer membranes,” Phys. Rev. Lett. 89, 288104-1–288104-4 (2002). [CrossRef]
  100. K. Nguyen, R. Soong, S.-C. lm, L. Waskell, A. Ramamoorthy, and Z. Chen, “Probing the spontaneous membrane insertion of a tail-anchored membrane protein by sum frequency generation spectroscopy,” J. Am. Chem. Soc. 132, 15112–15115(2010). [CrossRef]
  101. K. Nguyen, S. Le Clair, S. Ye, and Z. Chen, “Molecular Interactions between Magainin 2 and Model Membranes in Situ,” J. Phys. Chem. B 113, 12358–12363 (2009). [CrossRef]
  102. J. Liu and J. C. Conboy, “Direct measurement of the transbilayer movement of phospholipids by sum-frequency vibrational spectroscopy,” J. Am. Chem. Soc. 126, 8376–8377 (2004). [CrossRef]
  103. J. Liu and J. C. Conboy, “1,2-diacyl-phosphatidylcholine flip-flop measured directly by sum-frequency vibrational spectroscopy,” Biophys. J. 89, 2522–2532 (2005). [CrossRef]
  104. T. C. Anglin and J. C. Conboy, “Kinetics and thermodynamics of flip-flop in binary phospholipid membranes measured by sum-frequency vibrational spectroscopy,” Biochemistry 48, 10220–10234 (2009).
  105. T. C. Anglin, J. Liu, and J. C. Conboy, “Facile lipid flip-flop in a phospholipid bilayer induced by gramicidin A measured by sum-frequency vibrational spectroscopy,” Biophys. J. 92, L01–L03 (2007). [CrossRef]
  106. T. C. Anglin, K. L. Brown, and J. C. Conboy, “Phospholipid flip-flop modulated by transmembrane peptides WALP and melittin,” J. Struct. Biol. 168, 37–52 (2009).
  107. J. Liu and J. C. Conboy, “Phase transition of a single lipid bilayer measured by sum-frequency vibrational spectroscopy,” J. Am. Chem. Soc. 126, 8894–8895 (2004). [CrossRef]
  108. J. Liu and J. C. Conboy, “Asymmetric distribution of lipids in a phase segregated phospholipid bilayer observed by sum-frequency vibrational spectroscopy,” J. Phys. Chem. C 111, 8988–8999 (2007). [CrossRef]
  109. M. Smits, A. Ghosh, J. Bredenbeck, S. Yamamoto, M. Mller, and M. Bonn, “Ultrafast energy flow in model biological membranes,” New J. Phys. 9, 390-1–390-20(2007). [CrossRef]
  110. E. V. Sitzmann and K. B. Eisenthal, “Picosecond dynamics of a chemical reaction at the air-water interface studied by surface second harmonic generation,” J. Phys. Chem. 92, 4579–4580 (1988). [CrossRef]
  111. A. Castro, E. V. Sitzmann, D. Zhang, and K. B. Eisenthal, “Rotational relaxation at the air/water interface by time-resolved second harmonic generation,” J. Phys. Chem. 95, 6752–6753 (1991). [CrossRef]
  112. A. L. Harris and N. J. Levinos, “Vibrational energy relaxation in a molecular monolayer at a metal surface,” J. Chem. Phys. 90, 3878–3879 (1989). [CrossRef]
  113. A. L. Harris, L. Rothberg, L. H. Dubos, N. J. Levinos, and L. Dahr, “Molecular vibrational energy relaxation at a metal surface: Methyl thiolate on Ag(111),” Phys. Rev. Lett. 64, 2086–2089 (1990). [CrossRef]
  114. P. Guyto-Sionnest, P. Dumas, Y. J. Chabal, and G. S. Higashi, “Lifetime of an adsorbate-substrate vibration: H on Si(111),” Phys. Rev. Lett. 64, 2156–2159 (1990). [CrossRef]
  115. R. P. Chin, X. Blas, Y. R. Shen, and S. Louie, “Anharmonicity and lifetime of the CH stretch mode on diamond H/C(111)-(1x1),” Euro. Phys. Lett. 30, 399–404 (1995).
  116. P. Guyot-Sionnest, “Coherent processes at surfaces: Free-induction decay and photon echo of the Si-H stretching vibration for H/Si(111),” Phys. Rev. Lett. 66, 1489–1492(1991). [CrossRef]
  117. X. D. Zhu and Y. R. , “Surface photon echoes in the infrared range,” Shen. Appl. Phys. B 50, 535–539 (1990).
  118. M. Bonn, C. Hess, S. Funk, J. H. Miners, B. N. Persson, M. Wolf, and G. Ertl, “Femtosecond surface vibrational spectroscopy of CO adsorbed on Ru(001) during desorption,” Phys. Rev. Lett. 84, 4653–4656 (2000). [CrossRef]
  119. J. A. McGuire and Y. R. Shen, “Ultrafast vibrational dynamics at water interfaces,” Science 313, 1945–1948 (2006). [CrossRef]
  120. M. Smit, A. Ghosh, M. Sterrer, M. Muller, and M. Bonn, “Ultrafast vibrational energy transfer between surface and bulk water at the air-water interface,” Phys. Rev. Lett. 98, 098302-1–098302-4 (2007).
  121. H. Wang, E. C. Y. Yan, E. Borguet, and K. B. Eisenthal, “Second harmonic generation from the surface of centrosymmetric particles in bulk solution,” Chem. Phys. Lett. 259, 15–20(1996). [CrossRef]
  122. J. M. Hartings, “Second harmonic generation and fluorescence images from surfactants on hanging droplets,” A. Poon, X. Pu, R. K. Chang, and T. M. Leslie, Chem. Phys. Lett. 281, 389–393 (1997). [CrossRef]
  123. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999). [CrossRef]
  124. N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett. 87, 103902-1–103902-4 (2001).
  125. S. Roke, W. G. Roeterkink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, “Vibrational sum frequency scattering from a submicron suspension,” Phys. Rev. Lett. 91, 258302-1–258302-4 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited