OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 2 — Feb. 1, 2011
  • pp: 228–235

Steady-state entanglement of two coupled qubits

Elena del Valle  »View Author Affiliations

JOSA B, Vol. 28, Issue 2, pp. 228-235 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (602 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The maximum entanglement allowed between two coupled qubits in the steady state established by independent incoherent sources of excitation is reported. Asymmetric configurations where one qubit is excited while the other dissipates the excitation are optimal for entanglement, reaching values three times larger than with thermal sources. The reason is the purification of the steady-state mixture (that includes a Bell state) thanks to the saturation of the pumped qubit. Photon antibunching between the cross emission of the qubits is proposed to experimentally evidence such large degrees of entanglement.

© 2011 Optical Society of America

OCIS Codes
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: September 29, 2010
Revised Manuscript: October 23, 2010
Manuscript Accepted: October 29, 2010
Published: January 10, 2011

Elena del Valle, "Steady-state entanglement of two coupled qubits," J. Opt. Soc. Am. B 28, 228-235 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009). [CrossRef]
  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
  3. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature (London) 464, 45–53 (2010). [CrossRef]
  4. G. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed (Springer-Verlag, 2000).
  5. Z. Ficek and R. Tanas, “Entangled states and collective nonclassical effects in two-atom systems,” Phys. Rep. 372, 369–443 (2002). [CrossRef]
  6. F. Verstraete, M. M. Wolf, and J. I. Cirac, “Quantum computation and quantum-state engineering driven by dissipation,” Nature Phys. 5, 633–636 (2009). [CrossRef]
  7. T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science 323, 598–601 (2009). [CrossRef] [PubMed]
  8. Z. Ficek, “Quantum entanglement and disentanglement of multi-atom systems,” Front. Phys. China 5, 26–81 (2010) DOI: 10.1007/s11467-009-0078-7 http://www.springerlink.com/content/11011u097t183821. [CrossRef]
  9. D. Braun, “Creation of entanglement by interaction with a common heat bath,” Phys. Rev. Lett. 89, 277901 (2002). [CrossRef]
  10. M. S. Kim, J. Lee, D. Ahn, and P. L. Knight, “Entanglement induced by a single-mode heat environment,” Phys. Rev. A 65, 040101(R) (2002). [CrossRef]
  11. L. Jakóbczyk, “Entangling two qubits by dissipation,” J. Phys. A 35, 6383–6392 (2002). [CrossRef]
  12. S. Schneider and G. J. Milburn, “Entanglement in the steady state of a collective-angular-momentum (Dicke) model,” Phys. Rev. A 65, 042107 (2002). [CrossRef]
  13. F. Benatti, R. Floreanini, and M. Piani, “Environment induced entanglement in Markovian dissipative dynamics,” Phys. Rev. Lett. 91, 070402 (2003). [CrossRef] [PubMed]
  14. L. Xiang-Ping, F. Mao-Fa, Z. Xiao-Juan, and C. Jian-Wu, “Quantum entanglement in a system of two spatially separated atoms coupled to the thermal reservoir,” Chin. Phys. Lett. 23, 3138–3141 (2006). [CrossRef]
  15. J.-H. An, S.-J. Wang, and H.-G. Luo, “Entanglement dynamics of qubits in a common environment,” Physica A (Amsterdam) 382, 753–764 (2007). [CrossRef]
  16. E. del Valle, F. P. Laussy, and C. Tejedor, “Electrostatic control of quantum dot entanglement induced by coupling to external reservoirs,” Europhys. Lett. 80, 57001 (2007). [CrossRef]
  17. E. del Valle, F. P. Laussy, F. Troiani, and C. Tejedor, “Entanglement and lasing with two quantum dots in a microcavity,” Phys. Rev. B 76, 235317 (2007). [CrossRef]
  18. L. D. Contreras-Pulido and R. Aguado, “Entanglement between charge qubits induced by a common dissipative environment,” Phys. Rev. B 77, 155420 (2008). [CrossRef]
  19. M. Hor-Meyll, A. Auyuanet, C. V. S. Borges, A. Aragão, J. A. O. Huguenin, A. Z. Khoury, and L. Davidovich, “Environment-induced entanglement with a single photon,” Phys. Rev. A 80, 042327 (2009). [CrossRef]
  20. D. G. Angelakis, S. Bose, and S. Mancini, “Steady-state entanglement between hybrid light-matter qubits,” Europhys. Lett. 85, 20007 (2009). [CrossRef]
  21. F. Benatti, R. Floreanini, and U. Marzolino, “Entangling two unequal atoms through a common bath,” Phys. Rev. A 81, 012105(2010). [CrossRef]
  22. L. Jakóbczyk, “Generation of Werner-like stationary states of two qubits in a thermal reservoir,” J. Phys. B 43, 015502 (2010). [CrossRef]
  23. S. G. Clark and A. S. Parkins, “Entanglement and entropy engineering of atomic two-qubit states,” Phys. Rev. Lett. 90, 047905(2003). [CrossRef] [PubMed]
  24. X. X. Yi, C. S. Yu, L. Zhou, and H. S. Song, “Noise-assisted preparation of entangled atoms,” Phys. Rev. A 68, 052304(2003). [CrossRef]
  25. M. B. Plenio and S. F. Huelga, “Entangled light from white noise,” Phys. Rev. Lett. 88, 197901 (2002). [CrossRef] [PubMed]
  26. X. Hao and S. Zhub, “Entanglement generation in trapped atoms,” Eur. Phys. J. D 41, 199–203 (2006). [CrossRef]
  27. X. L. Huang, J. L. Guo, and X. X. Yi, “Nonequilibrium thermal entanglement in a three-qubit xx model,” Phys. Rev. A 80, 054301 (2009). [CrossRef]
  28. J.-B. Xu and S.-B. Li, “Control of the entanglement of two atoms in an optical cavity via white noise,” New J. Phys. 7, 72-1–17(2005). [CrossRef]
  29. L. Hartmann, W. Dür, and H.-J. Briegel, “Steady-state entanglement in open and noisy quantum systems,” Phys. Rev. A 74, 052304 (2006). [CrossRef]
  30. S. F. Huelga and M. B. Plenio, “Stochastic resonance phenomena in quantum many-body systems,” Phys. Rev. Lett. 98, 170601(2007). [CrossRef]
  31. L. Hartmann, W. Dür, and H. J. Briegel, “Entanglement and its dynamics in open, dissipative systems,” New J. Phys. 9, 230(2007). [CrossRef]
  32. N. Lambert, R. Aguado, and T. Brandes, “Nonequilibrium entanglement and noise in coupled qubits,” Phys. Rev. B 75, 045340(2007). [CrossRef]
  33. A. Rivas, N. P. Oxtoby, and S. F. Huelga, “Stochastic resonance phenomena in spin chains,” Eur. Phys. J. B 69, 51–57 (2009). [CrossRef]
  34. H. Wang, S. Liu, and J. He, “Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine,” Phys. Rev. E 79, 041113 (2009). [CrossRef]
  35. L. Zhou, G. H. Yang, and A. K. Patnaik, “Spontaneously generated atomic entanglement in free space reinforced by incoherent pumping,” Phys. Rev. A 79, 062102 (2009). [CrossRef]
  36. J. Li and G. S. Paraoanu, “Generation and propagation of entanglement in driven coupled-qubit systems,” New J. Phys. 11, 113020 (2009). [CrossRef]
  37. C.-J. Shan, T. Chen, J.-B. Liu, W.-W. Cheng, T.-K. Liu, Y.-X. Huang, and H. Li, “Controlling sudden birth and sudden death of entanglement at finite temperature,” Int. J. Theor. Phys. 49, 717–727 (2010). [CrossRef]
  38. I. Bloch, “Quantum coherence and entanglement with ultracold atoms in optical lattices,” Nature (London) 453, 1016–1022(2008). [CrossRef]
  39. M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001). [CrossRef] [PubMed]
  40. H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, “Direct observation of controlled coupling in an individual quantum dot molecule,” Phys. Rev. Lett. 94, 057402 (2005). [CrossRef] [PubMed]
  41. B. D. Gerardot, S. Strauf, M. J. A. de Dood, A. M. Bychkov, A. Badolato, K. Hennessy, E. L. Hu, D. Bouwmeester, and P. M. Petroff, “Photon statistics from coupled quantum dots,” Phys. Rev. Lett. 95, 137403 (2005). [CrossRef] [PubMed]
  42. J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature (London) 453, 1031–1042 (2008). [CrossRef]
  43. A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999). [CrossRef]
  44. S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2396 (2000). [CrossRef] [PubMed]
  45. S. Ashhab, A. O. Niskanen, K. Harrabi, Y. Nakamura, T. Picot, P. C. de Groot, C. J. P. M. Harmans, J. E. Mooij, and F. Nori, “Interqubit coupling mediated by a high-excitation-energy quantum object,” Phys. Rev. B 77, 014510 (2008). [CrossRef]
  46. S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett. 87, 037902 (2001). [CrossRef] [PubMed]
  47. J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature (London) 449, 443–447 (2007). [CrossRef]
  48. A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010). [CrossRef]
  49. E. Gallardo, L. J. Martinez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. Garcia, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81, 193301 (2010). [CrossRef]
  50. E. del Valle, Microcavity Quantum Electrodynamics (VDM Verlag, 2010).
  51. E. del Valle, “Strong and weak coupling of two coupled qubits,” Phys. Rev. A 81, 053811 (2010). [CrossRef]
  52. H. J. Carmichael, Statistical Methods in Quantum Optics 1, 2nd ed (Springer, 2002).
  53. F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008). [CrossRef] [PubMed]
  54. H.-J. Briegel and B.-G. Englert, “Quantum optical master equations: The use of damping bases,” Phys. Rev. A 47, 3311–3329 (1993). [CrossRef] [PubMed]
  55. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998). [CrossRef]
  56. W. J. Munro, D. F. V. James, A. G. White, and P. G. Kwiat, “Maximizing the entanglement of two mixed qubits,” Phys. Rev. A 64, 030302(R) (2001). [CrossRef]
  57. S. Campbell and M. Paternostro, “Dissipative scheme to approach the boundary of two-qubit entangled mixed states,” Phys. Rev. A 79, 032314 (2009). [CrossRef]
  58. O. Benson and Y. Yamamoto, “Master-equation model of a single-quantum-dot microsphere laser,” Phys. Rev. A 59, 4756–4763 (1999). [CrossRef]
  59. M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis, “Measurement of the entanglement of two superconducting qubits via state tomography,” Science 313, 1423–1425 (2006). [CrossRef] [PubMed]
  60. E. del Valle, “On the coupling of two quantum dots through a cavity mode,” http://arxiv.org/PS_cache/arxiv/pdf/1007/1007.1784v1.pdf (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited