OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 2 — Feb. 1, 2011
  • pp: 236–240

Bright chirp-free and chirped nonautonomous solitons under dispersion and nonlinearity management

Zhan-Ying Yang, Li-Chen Zhao, Tao Zhang, and Rui-Hong Yue  »View Author Affiliations


JOSA B, Vol. 28, Issue 2, pp. 236-240 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000236


View Full Text Article

Enhanced HTML    Acrobat PDF (554 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a series of chirp-free and chirped analytical nonautonomous soliton solutions to the generalized nonlinear Schrödinger equation with distributed coefficients by Darboux transformation from a trivial seed. For a chirp-free nonautonomous soliton, the dispersion management term can change the motion of a nonautonomous soliton and does not affect its shape at all. Specifically, the classical optical soliton can be presented with a variable dispersion term and nonlinearity when there is no gain. For a chirped nonautonomous soliton, dispersion management can meanwhile affect the shape and motion of nonautonomous solitons. The periodic dispersion term can be used to control its “breathing” shape, and it does not affect the trajectory of a nonautonomous soliton center with a certain condition.

© 2011 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(260.2030) Physical optics : Dispersion

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 31, 2010
Manuscript Accepted: November 5, 2010
Published: January 10, 2011

Citation
Zhan-Ying Yang, Li-Chen Zhao, Tao Zhang, and Rui-Hong Yue, "Bright chirp-free and chirped nonautonomous solitons under dispersion and nonlinearity management," J. Opt. Soc. Am. B 28, 236-240 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-2-236


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973). [CrossRef]
  2. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion,” Appl. Phys. Lett. 23, 171–172 (1973). [CrossRef]
  3. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond pulse narrowing and solitons in optical fibers,” Phys. Rev. Lett. 45, 1095–1098 (1980). [CrossRef]
  4. H. G. Luo, D. Zhao, and X. G. He, “Exactly controllable transmission of nonautonomous optical solitons,” Phys. Rev. A 79, 063802 (2009). [CrossRef]
  5. L. F. Mollenauer and K. Smith, “Demonstration of soliton transmission over more than 4000kmin fiber with loss periodically compensated by Raman gain,” Opt. Lett. 13, 675–677 (1988). [CrossRef] [PubMed]
  6. M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, “Recent progress in soliton transmission technology,” Chaos 10, 486–514 (2000). [CrossRef]
  7. M. Senturion, M. A. Porter, P. G. Kevrekidis, and D. Psaltis, “Nonlinearity management in optics: experiment, theory, and simulation,” Phys. Rev. Lett. 97, 033903 (2006). [CrossRef]
  8. V. N. Serkin and A. Hasegawa, “Novel soliton solution of the nonlinear Schrödinger equation model,” Phys. Rev. Lett. 85, 4502–4505 (2000). [CrossRef] [PubMed]
  9. V. N. Serkin, A. Hasegawa, and T. L. Belyaeva, “Nonautonomous solitons in external potentials,” Phys. Rev. Lett. 98, 074102(2007), [CrossRef] [PubMed]
  10. V. N. Serkin, A. Hasegawa, and T. L. Belyaeva, “Nonautonomous matter wave solitons near Feshbach resonance,” Phys. Rev. A 81, 023610 (2010). [CrossRef]
  11. V. I. Kruglov, A. C. Peacock, and J. D. Harvey, “Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,” Phys. Rev. Lett. 90, 113902 (2003). [CrossRef] [PubMed]
  12. S. A. Ponomarenko and G. P. Agrawal, “Interactions of chirped and chirp-free similaritons in optical fiber amplifiers,” Opt. Express 15, 2963–2973 (2007). [CrossRef] [PubMed]
  13. V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, “Self-similar propagation of higher-power parabolic pulse in optical fiber amplifiers,” Opt. Lett. 25, 1753–1755 (2000). [CrossRef]
  14. B. A. Malomed, Soliton Management in Periodic Systems, (Springer, 2006).
  15. D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, “High quality soliton loss-compensation in 38km dispersion-decreasing fibre,” Electron. Lett. 31, 1681–1682 (1995). [CrossRef]
  16. A. J. Stentz, R. Boyd, and A. F. Evans, “Dramatically improved transmission of ultrashort solitons through 40km of dispersion-decreasing fiber,” Opt. Lett. 20, 1770–1772 (1995). [CrossRef] [PubMed]
  17. D. J. Richardson, L. Dong, R. P. Chamberlin, A. D. Ellis, T. Widdowson, and W. A. Pender, “Periodically amplified system based on loss compensating dispersion decreasing fibre,” Electron. Lett. 32, 373–378 (1996). [CrossRef]
  18. K. Suzuki, H. Kubota, A. Sahara, and M. Nakazawa, “640Gbit/s (40Gbit/s 16 channel) dispersion-managed DWDM soliton transmission over 1000km with spectral efficiency of 0.4bit/Hz,” Electron. Lett. 36, 443–445 (2000). [CrossRef]
  19. M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahata, “Ultrahigh-speed long-distance TDM and WDM soliton transmission technologies,” IEEE J. Sel. Top. Quantum Electron. 6, 363–396 (2000). [CrossRef]
  20. L. F. Mollenauer, P. V. Mamyshev, J. Gripp, M. J. Neubelt, N. Mamysheva, L. Gruner-Nielsen, and T. Veng, “Demonstration of massive wavelength-division multiplexing over transoceanic distances by use of dispersion-managed solitons,” Opt. Lett. 25, 704–706 (2000). [CrossRef]
  21. G. P. Agrawal, Nonliear Fiber Optics, 3rd ed. (Academic, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited