OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 2 — Feb. 1, 2011
  • pp: 241–246

Generation of conical and spherical second harmonics in three-dimensional nonlinear photonic crystals with radial symmetry

Junjie Chen and Xianfeng Chen  »View Author Affiliations

JOSA B, Vol. 28, Issue 2, pp. 241-246 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (822 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two types of radially symmetric three-dimensional nonlinear photonic crystals with the cylindrical structure and the egglike structure are proposed, from which the conical and the spherical quadratic harmonic waves can be produced, respectively, by three-dimensional quasi-phase matching. First, the cylindrical structures with periodic and aperiodic modulations of the nonlinear coefficient are both studied, showing their significant advantages compared to the corresponding two-dimensional structures. The dependencies of the transverse and the longitudinal phase-matching periods on harmonic propagating directions are also calculated and analyzed. Then, the egglike structure is designed by programming and the distribution of reciprocal vectors is presented, indicating its ability to generate the spherical harmonic as a point light source. The investigation of the intensity distribution on the spherical wavefront is also performed, showing its strong dependence on the harmonic polarization and the quadratic nonlinear coefficients.

© 2011 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Nonlinear Optics

Original Manuscript: September 7, 2010
Revised Manuscript: November 12, 2010
Manuscript Accepted: November 16, 2010
Published: January 10, 2011

Junjie Chen and Xianfeng Chen, "Generation of conical and spherical second harmonics in three-dimensional nonlinear photonic crystals with radial symmetry," J. Opt. Soc. Am. B 28, 241-246 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  2. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998). [CrossRef]
  3. S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures,” IEEE J. Quantum Electron. 45, 1465–1472 (2009). [CrossRef]
  4. Y. Sheng, S. M. Saltiel, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation with fundamental beams of different polarizations,” Opt. Lett. 35, 1317–1319 (2010). [CrossRef] [PubMed]
  5. Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, “Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides,” Phys. Rev. Lett. 100, 163904 (2008). [CrossRef] [PubMed]
  6. Y. Zhang, Z. Qi, W. Wang, and S. N. Zhu, “Quasi-phase-matched Cerenkov second-harmonic generation in a hexagonally poled LiTaO3 waveguide,” Appl. Phys. Lett. 89, 171113 (2006). [CrossRef]
  7. R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett. 89, 191105 (2006). [CrossRef]
  8. A. R. Tunyagi, M. Ulex, and K. Betzler, “Noncollinear optical frequency doubling in strontium barium niobate,” Phys. Rev. Lett. 90, 243901 (2003). [CrossRef] [PubMed]
  9. P. Molina, M. D. Ramirez, and L. E. Bausa, “Strontium barium niobate as a multifunctional two-dimensional nonlinear ‘Photonic Glass’,” Adv. Funct. Mater. 18, 709–715 (2008). [CrossRef]
  10. P. Molina, S. Alvarez-Garcia, M. O. Ramirez, J. Garcia-Sole, L. E. Bausa, H. J. Zhang, W. L. Gao, J. Y. Wang, and M. H. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009). [CrossRef]
  11. A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008). [CrossRef]
  12. M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature (London) 432, 374–376 (2004). [CrossRef]
  13. Y. Sheng, J. H. Dou, B. Q. Ma, B. Y. Cheng, and D. Z. Zhang, “Broadband efficient second harmonic generation in media with a short-range order,” Appl. Phys. Lett. 91, 011101 (2007). [CrossRef]
  14. S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Generation of second-harmonic conical waves via nonlinear Bragg diffraction,” Phys. Rev. Lett. 100, 103902 (2008). [CrossRef] [PubMed]
  15. S. Saltiel, W. Krolikowski, D. Neshev, and Y. S. Kivshar, “Generation of Bessel beams by parametric frequency doubling in annular nonlinear periodic structures,” Opt. Express 15, 4132–4138 (2007). [CrossRef] [PubMed]
  16. S. M. Saltiel, D. N. Neshev, W. Krolikowski, N. Voloch-Bloch, A. Arie, O. Bang, and Y. S. Kivshar, “Nonlinear diffraction from a virtual beam,” Phys. Rev. Lett. 104, 083902 (2010). [CrossRef] [PubMed]
  17. S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivsharl, “Spatiotemporal toroidal waves from the transverse second-harmonic generation,” Opt. Lett. 33, 527–529(2008). [CrossRef] [PubMed]
  18. D. Kasimov, A. Arie, E. Winebrand, G. Rosenman, A. Bruner, P. Shaier, and D. Eger, “Annular symmetry nonlinear frequency converters,” Opt. Express 14, 9371–9376 (2006). [CrossRef] [PubMed]
  19. J. J. Chen and X. F. Chen, “Phase matching in three-dimensional nonlinear photonic crystals,” Phys. Rev. A 80, 013801(2009). [CrossRef]
  20. I. T. Wellington, C. E. Valdivia, T. J. Sono, C. L. Sones, S. Mailis, and R. W. Eason, “Ordered nano-scale domains in lithium niobate single crystals via phase-mask assisted all-optical poling,” Appl. Surf. Sci. 253, 4215–4219 (2007). [CrossRef]
  21. C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86, 022906 (2005). [CrossRef]
  22. S. Fahy and R. Merlin, “Reversal of ferroelectric domains by ultrashort optical pulses,” Phys. Rev. Lett. 73, 1122–1125 (1994). [CrossRef] [PubMed]
  23. H. S. Zhu, X. F. Chen, H. Y. Chen, and X. W. Deng, “Formation of domain reversal by direct irradiation with femtosecond laser in lithium niobate,” Chin. Opt. Lett. 7, 169–172 (2009). [CrossRef]
  24. H. Lao, H. Zhu, and X. Chen, “Surface ablation of congruent and Mg-doped lithium niobate by femtosecond laser,” Laser Phys. 20, 245–249 (2009). [CrossRef]
  25. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion-equation for congruently grown lithium-niobate,” Opt. Quantum Electron. 16, 373–375 (1984). [CrossRef]
  26. S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, “Multiorder nonlinear diffraction in frequency doubling processes,” Opt. Lett. 34, 848–850 (2009). [CrossRef] [PubMed]
  27. B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175–2177 (1999). [CrossRef]
  28. N. Voloch, T. Ellenbogen, and A. Arie, “Radially symmetric nonlinear photonic crystals,” J. Opt. Soc. Am. B 26, 42–49(2008). [CrossRef]
  29. Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, “Wave-front engineering by huygens-fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100, 063902 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited