OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 2 — Feb. 1, 2011
  • pp: 253–264

Transmission resonances in plasmonic metallic gratings

G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. A. Vincenti, and A. Alù  »View Author Affiliations


JOSA B, Vol. 28, Issue 2, pp. 253-264 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000253


View Full Text Article

Enhanced HTML    Acrobat PDF (1448 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using the Fourier modal method (FMM) we report our analysis of the transmission resonances of a plasmonic grating with subwavelength period and extremely narrow slits for wavelengths of the incoming, transverse magnetic (TM)-polarized, radiation ranging from 240 nm to 1500 nm and incident angles from 0 ° to 90 ° . In particular, we study the case of a silver grating placed in vacuo. Consistent with previous studies on the topic, we highlight that the main mechanism for extraordinary transmission is a TM-Fabry-Perot (FP) branch supported by waveguide modes inside each slit. The TM-FP branch may also interact with surface plasmons (SPs) at the air/Ag interface through the reciprocal lattice vectors of the grating, for periods comparable with the incoming wavelength. When the TM-FP branch crosses an SP branch, a bandgap is formed along the line of the SP dispersion. The gap has a Fano-Feshbach resonance at the low frequency band edge and a ridge resonance with extremely long lifetime at the high frequency band edge. We discuss the nature of these dispersion features, and in particular we describe the ridge resonance in the framework of guided-mode resonances (GMRs). In addition, we elucidate the connection of the coupling between the TM-FP branch and SPs within the Rayleigh condition. We also study the peculiar characteristics of the field localization and the energy transport in two topical examples.

© 2011 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.4236) Materials : Nanomaterials
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: August 30, 2010
Manuscript Accepted: November 8, 2010
Published: January 12, 2011

Citation
G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. A. Vincenti, and A. Alù, "Transmission resonances in plasmonic metallic gratings," J. Opt. Soc. Am. B 28, 253-264 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-2-253


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Petit, “The homogeneous problem,” in Electromagnetic Theory of Gratings, Topics in Current Physics, M.Nevière, ed. (Springer-Verlag, 1980), Chap. 5, Vol. 22. [CrossRef]
  2. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402(1902).
  3. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21, 1530–1533 (1968). [CrossRef]
  4. H. Raether, “Surface plasmons in gratings,” Surface Plasmons, Springer Tracts in Modern Physics (Springer-Verlag, 1988), Chap. 6, Vol. 111.
  5. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669(1998). [CrossRef]
  6. Special Issue on “Optics on the Nanoscale: Principles, Instrumentation and Applications,” Appl. Phys. B 84 (2006).
  7. F. J. García de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1286 (2007). [CrossRef]
  8. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  9. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  10. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5604 (2001). [CrossRef] [PubMed]
  11. F. Marquier, J.-J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13, 70–76 (2005). [CrossRef] [PubMed]
  12. K. Knop, “Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves,” J. Opt. Soc. Am. 68, 1206–1210 (1978). [CrossRef]
  13. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1991).
  14. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Arthech House, 1995).
  15. V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H.-K. Yuan, W. Cai, and V. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16, 1186–1195 (2008). [CrossRef] [PubMed]
  16. M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A 82, 043828 (2007). [CrossRef]
  17. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818(1981). [CrossRef]
  18. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996). [CrossRef]
  19. G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019–1023 (1996). [CrossRef]
  20. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996). [CrossRef]
  21. B. Guizal, H. Yala, and D. Felbacq, “Reformulation of the eigenvalue problem in the Fourier modal method with spatial adaptive resolution,” Opt. Lett. 34, 2790–2792 (2009). [CrossRef] [PubMed]
  22. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996). [CrossRef]
  23. R. H. Morf, “Exponentially convergent and numerically efficient solution of Maxwell’s equations for lamellar gratings,” J. Opt. Soc. Am. A 12, 1043–1056 (1995). [CrossRef]
  24. R. E. Collins, Field Theory of Guided Waves, IEEE Press Series on Electromagnetic Wave Theory (Wiley, New York, 1991).
  25. G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Influence of losses on the superresolution performances of an impedance-matched negative-index material,” J. Opt. Soc. Am. B 25, 236–246 (2008). [CrossRef]
  26. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with sub-wavelength scale localization,” Phys. Rev. B 73, 035407(2006). [CrossRef]
  27. G. D’Aguanno, N. Mattiucci, M. Scalora, and M. J. Bloemer, “TE and TM guided modes in an air waveguide with a negative-index-material cladding,” Phys. Rev. E 71, 046603 (2005). [CrossRef]
  28. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007). [CrossRef] [PubMed]
  29. A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett. 101, 266802 (2008). [CrossRef]
  30. S. P. Astilean, Ph. Lalanne, and M. Palamary, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265–273 (2000). [CrossRef]
  31. S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001). [CrossRef]
  32. Ph. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A: Pure Appl. Opt. 2, 48–51 (2000). [CrossRef]
  33. F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002). [CrossRef]
  34. S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A: Pure Appl. Opt. 4, S154–S160 (2002). [CrossRef]
  35. W. C. Liu and D. P. Tsai, “Optical tunneling of surface plasmon polaritons and localized surface plasmon resonance,” Phys. Rev. B 65, 155423 (2002). [CrossRef]
  36. I. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on thin-slab metal gratings,” Phys. Rev. B 67, 235404 (2003). [CrossRef]
  37. K. G. Lee and Q.-H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95, 103902 (2005). [CrossRef] [PubMed]
  38. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010). [CrossRef]
  39. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986). [CrossRef]
  40. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonance in nanoscale structures,” available at http://arxiv4.library.cornell.edu/abs/0902.3014v1.
  41. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961). [CrossRef]
  42. H. Friedrich and D. Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A 32, 3231–3242 (1985). [CrossRef] [PubMed]
  43. G. D’Aguanno, N. Mattiucci, M. Scalora, M. J. Bloemer, and A. M. Zheltikov, “Density of modes and tunneling times in finite, one-dimensional, photonic crystals: A comprehensive analysis,” Phys. Rev. E 70, 016612 (2004). [CrossRef]
  44. P. Vincent and M. Nevière, “Corrugated dielectric waveguides: a numerical study of the second-order stop band,” Appl. Opt. 20, 345–351 (1979).
  45. R. Magnusson and S. S. Wang, “New principles for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992). [CrossRef]
  46. S. Fan and J. D. Joannopoulos, “Analysis of the guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002). [CrossRef]
  47. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12, 5661–5674 (2004). [CrossRef] [PubMed]
  48. E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Extraordinary optical transmission without plasmons: The s-polarization case,” J. Opt. A Pure Appl. Opt. 8, S94–S97 (2006). [CrossRef]
  49. Lord Rayleigh, “Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philos. Mag. 14, 60–65 (1907).
  50. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001). [CrossRef] [PubMed]
  51. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature (London) 454, 39–46 (2007) (and references therein).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited