OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 2 — Feb. 1, 2011
  • pp: 342–346

Dynamics of two-dimensional dissipative spatial solitons interacting with an umbrella-shaped potential

Chengping Yin, Dumitru Mihalache, and Yingji He  »View Author Affiliations

JOSA B, Vol. 28, Issue 2, pp. 342-346 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (722 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically study the dynamics of two-dimensional spatial solitons on the top of an external umbrella-shaped potential in the cubic-quintic complex Ginzburg-Landau model. Unique scenarios of the dynamics of dissipative spatial solitons interacting with this potential are put forward, such as generation of straight-lined arrays (or “jets”), emission of either one necklace-shaped soliton array or several such soliton arrays, soliton evolution into an oscillatory mode, and soliton spreading. In addition, by changing the number of lateral planes of the external potential, keeping fixed the other parameters of the potential, the various scenarios of soliton dynamics can transform into each other. These results suggest possible applications to signal routing in all-optical information processing devices.

© 2011 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

Original Manuscript: October 25, 2010
Revised Manuscript: November 30, 2010
Manuscript Accepted: November 30, 2010
Published: February 1, 2011

Chengping Yin, Dumitru Mihalache, and Yingji He, "Dynamics of two-dimensional dissipative spatial solitons interacting with an umbrella-shaped potential," J. Opt. Soc. Am. B 28, 342-346 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S.Trillo and W.Torruellas eds., Spatial Solitons (Springer, 2001), pp. 87–125.
  2. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, 2003), pp. 31–60
  3. W. J. Firth, Self-Organization in Optical Systems and Applications in Information Technology, M.A.Vorontsov and W.B.Miller, eds. (Springer-Verlag, 1995), p. 69. [CrossRef]
  4. N. N. Rosanov, S. V. Fedorov, and A. N. Shatsev, Dissipative Solitons: From Optics to Biology and Medicine, N.Akhmediev and A.Ankiewicz, eds., Lecture Notes in Physics (2008), Vol. 751, 93–111 (Springer, 2008).
  5. R. Kuszelewicz, S. Barbay, G. Tissoni, and G. Almuneau, “Editorial on Dissipative Optical Solitons,” Eur. Phys. J. D 59, 1–2(2010). [CrossRef]
  6. E. Pampaloni, P. L. Ramazza, S. Residori, and F. T. Arecchi, “Two-dimensional crystals and quasicrystals in nonlinear optics,” Phys. Rev. Lett. 74, 258–261 (1995). [CrossRef] [PubMed]
  7. W. J. Firth and A. J. Scroggie, “Optical bullet holes: Robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996). [CrossRef] [PubMed]
  8. L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542–2559 (1998). [CrossRef]
  9. Z. Chen and K. McCarthy, “Spatial soliton pixels from partially incoherent light,” Opt. Lett. 27, 2019–2021 (2002). [CrossRef]
  10. S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knödl, M. Miller, and R. Jäger, “Cavity solitons as pixels in semiconductor microcavities,” Nature (London) 419, 699–702 (2002). [CrossRef]
  11. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically-induced nonlinear photonic lattices,” Nature (London) 422, 147–150 (2003). [CrossRef]
  12. Y. V. Kartashov, A. A. Egorov, L. Torner, and D. N. Christodoulides, “Stable soliton complexes in two-dimensional photonic lattices,” Opt. Lett. 29, 1918–1920 (2004). [CrossRef] [PubMed]
  13. B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides, and J. W. Fleischer, “Wave and defect dynamics in nonlinear photonic quasicrystals,” Nature (London) 440, 1166–1169 (2006). [CrossRef]
  14. P. Genevet, S. Barland, M. Giudici, and J. R. Tredicce, “Bistable and addressable localized vortices in semiconductor lasers,” Phys. Rev. Lett. 104, 223902 (2010). [CrossRef] [PubMed]
  15. C. Cleff, B. Gütlich, and C. Denz, “Gradient induced motion control of drifting solitary structures in a nonlinear optical single feedback experiment,” Phys. Rev. Lett. 100, 233902(2008). [CrossRef] [PubMed]
  16. N. N. Rozanov and S. V. Fedorov, “Diffraction switching waves and autosolitons in a laser with saturable absorption,” Opt. Spektrosk. 72, 1394 (1992); English translation: Opt. Spectrosc. (USSR) 72, 782 (1992).
  17. N. N. Rozanov, “Dissipative optical solitons,” J. Opt. Technol. 76, 187–198 (2009). [CrossRef]
  18. N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996). [CrossRef]
  19. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814(2008). [CrossRef]
  20. N. Akhmediev and A. Ankiewicz, Dissipative Solitons in the Complex Ginzburg–Landau and Swift–Hohenberg Equations, Lecture Notes in Physics (Springer, 2005), Vol. 661, pp. 1–17. [CrossRef]
  21. H. Leblond, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the Ginzburg-Landau model of a two-dimensional lasing medium with a transverse grating,” Phys. Rev. A 80, 033835 (2009). [CrossRef]
  22. L.-C. Crasovan, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the two-dimensional Ginzburg-Landau equation,” Phys. Rev. E 63, 016605 (2000). [CrossRef]
  23. L.-C. Crasovan, B. A. Malomed, and D. Mihalache, “Errupting, flat-top, and composite spiral solitons in the two-dimensional Ginzburg-Landau equation,” Phys. Lett. A 289, 59–65(2001). [CrossRef]
  24. D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. Lett. 97, 073904 (2006). [CrossRef] [PubMed]
  25. D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in three-dimensional cubic-quintic Ginzburg-Landau equation,” Phys. Rev. A 75, 033811 (2007). [CrossRef]
  26. D. V. Skryabin and A. G. Vladimirov, “Vortex-induced rotation of clusters of localized states in the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 89, 044101 (2002). [CrossRef] [PubMed]
  27. Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg–Landau equations with a linear potential,” Opt. Lett. 34, 2976–2978(2009). [CrossRef] [PubMed]
  28. Y. J. He, B. A. Malomed, and H. Z. Wang, “Fusion of necklace-ring patterns into vortex and fundamental solitons in dissipative media,” Opt. Express 15, 17502–17508 (2007). [CrossRef] [PubMed]
  29. V. I. Petviashvili and A. M. Sergeev, Dokl. AN SSSR 276, 1380 (1984); English translation: Sov. Phys. Dokl. 29, 493(1984).
  30. B. A. Malomed, “Complex Ginzburg-Landau Equation,” in Encyclopedia of Nonlinear Science, A.Scott, ed. (Routledge, 2005) pp. 157–160.
  31. B. A. Malomed, “Solitary pulses in linearly coupled Ginzburg-Landau equations,” Chaos 17, 037117 (2007). [CrossRef] [PubMed]
  32. P. Mandel and M. Tlidi, “Transverse dynamics in cavity nonlinear optics,” J. Opt. Soc. Am. B 6, R60–R75 (2004).
  33. N. N. Rosanov, S. V. Fedorov, and A. N. Shatsev, “Two-dimensional laser soliton complexes with weak, strong, and mixed coupling,” Appl. Phys. B 81, 937–943 (2005). [CrossRef]
  34. N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Spatiotemporal optical solitons in nonlinear dissipative media: From stationary light bullets to pulsating complexes,” Chaos 17, 037112 (2007). [CrossRef] [PubMed]
  35. Y.-J. He, B. A. Malomed, F. Ye, and B. Hu, “Dynamics of dissipative spatial solitons over a sharp potential,” J. Opt. Soc. Am. B 27, 1139–1142 (2010). [CrossRef]
  36. B. Liu, Y.-J. He, B. A. Malomed, X. Wang, P. G. Kevrekidis, T. Wang, F. Leng, Z. Qiu, and H. Wang, “Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials,” Opt. Lett. 35, 1974–1976(2010). [CrossRef] [PubMed]
  37. Y. J. He, D. Mihalache, and B. B. Hu, “Annular light beams induced by coupling a dissipative spatial soliton on the top of a sharp external potential,” J. Opt. Soc. Am. B 27, 2174–2179(2010). [CrossRef]
  38. R. Driben, B. A. Malomed, A. Gubeskys, and J. Zyss, “Cubic-quintic solitons in the checkerboard potential,” Phys. Rev. E 76, 066604 (2007). [CrossRef]
  39. J. M. Soto-Crespo, N. Akhmediev, C. Mejía-Cortés, and N. Devine, “Dissipative ring solitons with vorticity,” Opt. Express 17, 4236–4250 (2009). [CrossRef] [PubMed]
  40. M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, “Single-laser, one beam, tetrahedral magneto-optical trap,” Opt. Express 17, 13601–13608 (2009). [CrossRef] [PubMed]
  41. S. Pollock, J. P. Cotter, A. Laliotis, and E. A. Hinds, “Integrated magneto-optical traps on a chip using silicon pyramid structures,” Opt. Express 17, 14109–14114 (2009). [CrossRef] [PubMed]
  42. O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol. 21, 61–68(2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited