OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 2 — Feb. 1, 2011
  • pp: 347–351

Slowdown and speedup of light pulses using the self-compensating photorefractive response

Boris Sturman, Pierre Mathey, and Hans-Rudolf Jauslin  »View Author Affiliations


JOSA B, Vol. 28, Issue 2, pp. 347-351 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000347


View Full Text Article

Enhanced HTML    Acrobat PDF (569 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study theoretically the effects of pulse slowdown and speedup in ferroelectric Sn 2 P 2 S 6 possessing a self- compensating photorefractive response. It is shown that both these effects can be implemented in one sample for sufficiently large values of the coupling strength. In contrast to other types of the photorefractive response (local and nonlocal), the output pulses do not suffer from strong spatial amplification and broadening.

© 2011 Optical Society of America

OCIS Codes
(160.2260) Materials : Ferroelectrics
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.5040) Nonlinear optics : Phase conjugation
(190.5330) Nonlinear optics : Photorefractive optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 1, 2010
Revised Manuscript: December 1, 2010
Manuscript Accepted: December 2, 2010
Published: February 1, 2011

Citation
Boris Sturman, Pierre Mathey, and Hans-Rudolf Jauslin, "Slowdown and speedup of light pulses using the self-compensating photorefractive response," J. Opt. Soc. Am. B 28, 347-351 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-2-347


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1999). [CrossRef]
  2. C. Liu, Z. Dutton, C. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature (London) 409, 490–493 (2001). [CrossRef]
  3. R. W. Boyd and D. J. Gauthier, “‘Slow’ and ‘fast’ light,” Progress in Optics, E.Wolf ed. (Elsevier, 2002), Vol. 43, pp. 497–530. [CrossRef]
  4. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003). [CrossRef] [PubMed]
  5. M. O. Scully and G. R. Welch, “Slow, stopped and stored light,” Phys. World 17(10), 31–34 (2004).
  6. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997). [CrossRef]
  7. M. Scully and M. Fleischhauer, “High-sensitivity magnetometer based on index-enhanced media,” Phys. Rev. Lett. 69, 1360–1363(1992). [CrossRef] [PubMed]
  8. Z. Dutton and L. V. Hau, “Storing and processing optical information with ultraslow light in Bose-Einstein condensates,” Phys. Rev. A 70, 053831 (2004). [CrossRef]
  9. A. Turukhin, V. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602(2002). [CrossRef] [PubMed]
  10. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003). [CrossRef] [PubMed]
  11. A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, “Observation of superluminal and slow light propagation in erbium-doped optical fiber,” Europhys. Lett. 73, 218–224 (2006). [CrossRef]
  12. P. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293(2004). [CrossRef] [PubMed]
  13. S. Stepanov and M. P. Sanchez, “Slow and fast light via two-wave mixing in erbium-doped fibers with saturable absorption,” Phys. Rev. A 80, 053830 (2009). [CrossRef]
  14. E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulses slowing down up to 0.025cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett. 91, 083902 (2003). [CrossRef] [PubMed]
  15. A. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93, 243604 (2004). [CrossRef]
  16. B. I. Sturman, E. V. Podivilov, and M. V. Gorkunov, “Photorefractive manipulation of light pulses,” Phys. Rev. A 77, 063808(2008). [CrossRef]
  17. B. Sturman, P. Mathey, R. Rebhi, and H. Jauslin, “Nonlinear pulse deceleration using photorefractive four-wave mixing,” J. Opt. Soc. Am. B 26, 1949–1953 (2009). [CrossRef]
  18. G. Zhang, R. Dong, F. Bo, and J. Xu,“Slowdown of group velocity of light by means of phase coupling in photorefractive two-wave mixing,” Appl. Opt. 43, 1167–1173(2004). [CrossRef] [PubMed]
  19. G. Zhang, F. Bo, R. Dong, and J. Xu,“Phase-coupling-induced ultraslow light propagation in solids at room temperature,” Phys. Rev. Lett. 93, 133903 (2004). [CrossRef] [PubMed]
  20. L. Solymar, D. Webb, and A. Grunnet-Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon Press, 1996).
  21. S. G. Odoulov, A. N. Shumelyuk, U. Hellwig, R. A. Rupp, A. A. Grabar, and I. M. Stoika, “Photorefraction in tin hypothiodiphosphate in the near infrared,” J. Opt. Soc. Am. B 13, 2352–2360(1996). [CrossRef]
  22. A. A. Grabar, Yu. M. Vysochanskii, A. N. Shumelyuk, M. Jazbinsek, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications, P.Günter and J.-P.Huignard eds. (Springer Verlag, 2006), Vol. 2, pp. 327–362.
  23. B. Sturman, P. Mathey, H. Jauslin, S. Odoulov, and A. Shumelyuk, “Modeling of the photorefractive nonlinear response in Sn2P2S6 crystals,” J. Opt. Soc. Am. B 24, 1303–1309(2007). [CrossRef]
  24. A. Shumelyuk and S. Odoulov, “Light pulse manipulation in Sn2P2S6,” J. Opt. 12, 104015 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited