OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 3 — Mar. 1, 2011
  • pp: 422–431

Quantum lithography under imperfect conditions: effects of loss and dephasing on two-photon interference fringes

Hideki Fujiwara, Yoshio Kawabe, Ryo Okamoto, Shigeki Takeuchi, and Keiji Sasaki  »View Author Affiliations


JOSA B, Vol. 28, Issue 3, pp. 422-431 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000422


View Full Text Article

Enhanced HTML    Acrobat PDF (1036 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a method to simulate a two-photon interference fringe by using a density matrix in order to describe various types of imperfections in the input state. Using this method, we numerically discuss the influence of various imperfections in an input state, such as dephasing and misalignment, on the quality (visibility and period) of the two-photon interference fringes. Applying this method to experimental data, we succeeded in numerically reproducing a two-photon interference fringe using the experimentally obtained density matrix, in which almost no free fitting parameters are required. From the results, because the main cause of the degradation of an interference fringe was found to be the limited aperture size of a two-photon detector, we can observe a two-photon interference fringe with a visibility of up to 94% in the experiments if an efficient two-photon absorbing material or a two-photon detector with a sufficiently high spatial resolution can be used.

© 2011 Optical Society of America

OCIS Codes
(270.5290) Quantum optics : Photon statistics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: June 17, 2010
Revised Manuscript: December 10, 2010
Manuscript Accepted: December 16, 2010
Published: February 11, 2011

Citation
Hideki Fujiwara, Yoshio Kawabe, Ryo Okamoto, Shigeki Takeuchi, and Keiji Sasaki, "Quantum lithography under imperfect conditions: effects of loss and dephasing on two-photon interference fringes," J. Opt. Soc. Am. B 28, 422-431 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-3-422

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited