OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 3 — Mar. 1, 2011
  • pp: 483–488

Suppression and hopping of whispering gallery modes in multiple-ring-coupled microcavity lasers

Xingwang Zhang, Hao Li, Xin Tu, Xiang Wu, Liying Liu, and Lei Xu  »View Author Affiliations


JOSA B, Vol. 28, Issue 3, pp. 483-488 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000483


View Full Text Article

Enhanced HTML    Acrobat PDF (930 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on single whispering gallery mode lasing generation and hopping in multiple-ring-coupled microcavities. A side-mode-suppression ratio (SMSR) of 28 dB is obtained in a four-ring-coupled cavity laser, and the ratio of the side- and main-mode lasing threshold ( I s th / I th ) is as large as 2.5. Both of the values are obviously higher than that of a two-ring-coupled cavity laser. We also find that the single-laser mode hops in steps of the mode spacing when the temperature of the coupled microcavity changes gradually. The mechanisms of side-mode suppression and mode hopping are investigated experimentally and theoretically.

© 2011 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 9, 2010
Revised Manuscript: December 11, 2010
Manuscript Accepted: December 13, 2010
Published: February 24, 2011

Citation
Xingwang Zhang, Hao Li, Xin Tu, Xiang Wu, Liying Liu, and Lei Xu, "Suppression and hopping of whispering gallery modes in multiple-ring-coupled microcavity lasers," J. Opt. Soc. Am. B 28, 483-488 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-3-483


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846(2003). [CrossRef] [PubMed]
  2. K. M. Dzurko, D. F. Welch, D. R. Scifres, and A. Hardy, “1 Wsingle-mode edge-emitting DBR ring oscillators,” IEEE Photon. Technol. Lett. 5, 369–371 (1993). [CrossRef]
  3. M. P. Nesnidal, L. J. Mawst, D. Botez, L. DiMarco, J. C. Connolly, and J. N. Abeles, “Single-frequency, single-spatial-mode ROW-DFB diode laser arrays,” IEEE Photon. Technol. Lett. 8, 182–184(1996). [CrossRef]
  4. P. Rabiei and W. H. Steier, “Tunable polymer double micro-ring filters,” IEEE Photon. Technol. Lett. 15, 1255–1257 (2003). [CrossRef]
  5. L. Shang, L. Liu, and L. Xu, “Single-frequency coupled asymmetric microcavity laser,” Opt. Lett. 33, 1150–1152 (2008). [CrossRef] [PubMed]
  6. L. P. Barry and P. Anandarajah, “Effect of side-mode suppression ratio on the performance of self-seeded gain-switched optical pulses in lightwave communications systems,” IEEE Photon. Technol. Lett. 11, 1360–1362 (1999). [CrossRef]
  7. B. Zhou, J. Wang, and H. Zhang, “Improvement of side-mode suppression ratio of a single-mode SCC semiconductor laser,” Electron. Lett. 21, 877–878 (1985). [CrossRef]
  8. S. F. Yu and E. H. Li, “Proposed enhancement of side-mode suppression ratio in λ/4 shifted distributed feedback lasers with nonuniform diffused quantum wells,” IEEE Photon. Technol. Lett. 8, 482–484 (1996). [CrossRef]
  9. S. N. M. Mestanza, A. A. Von Zuben, and N. C. Frateschi, “Enhanced side-mode suppression in chaotic stadium microcavity lasers,” J. Appl. Phys. 105, 063101 (2009). [CrossRef]
  10. S. Pan and J. Yao, “A wavelength-tunable single-longitudinal-mode fiber ring laser with a large side mode suppression and improved stability,” IEEE Photon. Technol. Lett. 22, 413–415(2010). [CrossRef]
  11. P. W. A. Mcilroy, “Calculation of the mode suppression ratio in Fabry–Perot, DBR, and external cavity lasers,” IEEE J. Quantum Electron. 26, 991–997 (1990). [CrossRef]
  12. H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131, 16612–16613(2009). [CrossRef] [PubMed]
  13. A. E. Siegman, Lasers (University Science, 1986).
  14. H. Cai, B. Liu, X. M. Zhang, A. Q. Liu, J. Tamil, T. Bourouina, and Q. X. Zhang, “A micromachined tunable coupled-cavity laser for wide tuning range and high spectral purity,” Opt. Express 16, 16670–16679 (2008). [CrossRef] [PubMed]
  15. M. Fridman, M. Nixon, E. Ronen, A. A. Friesem, and N. Davidson, “Phase locking of two coupled lasers with many longitudinal modes,” Opt. Lett. 35, 526–528 (2010). [CrossRef] [PubMed]
  16. M. Munroe, S. E. Hodges, J. Cooper, and M. G. Raymer, “Total intensity modulation and mode hopping in a coupled cavity laser as a result of external-cavity length variations,” Opt. Lett. 19, 105–107 (1994). [CrossRef] [PubMed]
  17. J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91, 121104 (2007). [CrossRef]
  18. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser & Photon. Rev. 2, 275–289 (2008). [CrossRef]
  19. I. M. I. Habbab and L. J. Cimini, Jr., “A new DBR laser structure for improved side-mode suppression,” IEEE Photon. Technol. Lett. 3, 700–702 (1991). [CrossRef]
  20. A. Moujoud, Z. Saddiki, T. Touam, and S. I. Najafi, “Measurement of the refractive-index variations with temperature of hybrid sol-gel glasses,” Thin Solid Films 422, 161–165 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited