OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 3 — Mar. 1, 2011
  • pp: 489–494

Two-dimensional optofluidic liquid-core waveguiding based on optimized integration of single- and multiple-layer antiresonance reflection optical waveguides

Jiwon Lee, Zhuo Ye, Kai-Ming Ho, and Jaeyoun Kim  »View Author Affiliations

JOSA B, Vol. 28, Issue 3, pp. 489-494 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (822 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel two-dimensional (2D) liquid-core waveguiding scheme that combines two different types of antiresonance reflection optical waveguides (ARROWs) to achieve ease of fabrication and richer optofluidic functionalities. We established the conditions for the optimal integration of the two ARROW schemes theoretically and validated them with 2D numerical mode analysis. The proposed scheme also provides a convenient means to install supporting solid-core waveguides without additional burden in fabrication.

© 2011 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.7380) Optical devices : Waveguides, channeled
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

Original Manuscript: October 7, 2010
Revised Manuscript: November 30, 2010
Manuscript Accepted: December 3, 2010
Published: February 25, 2011

Jiwon Lee, Zhuo Ye, Kai-Ming Ho, and Jaeyoun Kim, "Two-dimensional optofluidic liquid-core waveguiding based on optimized integration of single- and multiple-layer antiresonance reflection optical waveguides," J. Opt. Soc. Am. B 28, 489-494 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid. 4, 3–16(2007). [CrossRef]
  2. A. R. Hawkins and H. Schmidt, “Optofluidic waveguides: II. Fabrication and structures,” Microfluid. Nanofluid. 4, 17–32 (2007). [CrossRef] [PubMed]
  3. T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, and M. A. Duguay, “Antiresonant reflecting optical waveguides for III-V integrated optics,” Electron. Lett. 23, 244–245 (1987). [CrossRef]
  4. S. Campopiano, R. Bernini, L. Zeni, and P. M. Sarro, “Microfluidic sensor based on integrated optical hollow waveguides,” Opt. Lett. 29, 1894–1896 (2004). [CrossRef] [PubMed]
  5. D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Single-molecule detection sensitivity using planar integrated optics on a chip,” Opt. Lett. 31, 2136–2138 (2006). [CrossRef] [PubMed]
  6. I. V. Goltser, L. J. Mawst, and D. Botez, “Single-cladding antiresonant reflecting optical wavguide-type diode laser,” Opt. Lett. 20, 2219–2221 (1995). [CrossRef] [PubMed]
  7. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002). [CrossRef]
  8. E. J. Lunt, P. Measor, B. S. Phillips, S. Kuhn, H. Schmidt, and A. R. Hawkins, “Improving solid to hollow core transmission for integrated ARROW waveguides,” Opt. Express 16, 20981–20986(2008). [CrossRef] [PubMed]
  9. H. P. Uranus, H. J. W. M. Hoekstra, and E. van Groesen, “Consideration on material composition for low-loss hollow-core integrated optical waveguides,” Opt. Commun. 260, 577–582(2006). [CrossRef]
  10. T. Delonge and H. Fouckhardt, “Integrated optical detection cell based on Bragg reflecting waveguides,” J. Chromatogr. A 716, 135–139 (1995). [CrossRef]
  11. O. Schmidt, M. Bassler, P. Kiesel, N. M. Johnson, and G. H. Döhler, “Guiding light in fluids,” Appl. Phys. Lett. 88, 151109(2006). [CrossRef]
  12. G. R. Fowles, Introduction to Modern Optics (Dover, 1975).
  13. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003). [CrossRef] [PubMed]
  14. P. Dumais, C. L. Callender, C. J. Ledderhof, and J. P. Noad, “Monolithic integration of microfluidic channels, liquid-core waveguides, and silica waveguides on silicon,” Appl. Opt. 45, 9182–9190 (2006). [CrossRef] [PubMed]
  15. G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5, 27–32 (2005). [CrossRef] [PubMed]
  16. Z. Li and D. Psaltis, “Optofluidic distributed feedback dye lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 185–193 (2007). [CrossRef]
  17. Comsol, Inc., “Comsol multiphysics,” http://www.comsol.com/products/multiphysics.
  18. G. B. Hocker and W. K. Burns, “Mode dispersion in diffused channel waveguides by the effective index method,” Appl. Opt. 16, 113–118 (1977). [CrossRef] [PubMed]
  19. K. H. Schlereth and M. Tacke, “The complex propagation constant of multilayer waveguides: an algorithm for a personal computer,” IEEE J. Quantum Electron. 26, 627–630 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited