OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 3 — Mar. 1, 2011
  • pp: 547–553

Plasmonic lenses for wavefront control applications using two-dimensional nanometric cross-shaped aperture arrays

Xiao Ming Goh, Ling Lin, and Ann Roberts  »View Author Affiliations

JOSA B, Vol. 28, Issue 3, pp. 547-553 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1377 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Localized surface plasmon resonances occurring within subwavelength apertures are accompanied by an aperture-geometry-dependent phase shift that can be utilized for beam manipulation. Here we demonstrate two- dimensional, planar, converging and diverging plasmonic lenses, formed by an array of nanometric spatially varying cross-shaped apertures in a silver film. The performance of lenses with different design configurations was evaluated at two different wavelengths using a confocal scanning optical microscope.

© 2011 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.1940) Diffraction and gratings : Diffraction
(080.3630) Geometric optics : Lenses
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Diffraction and Gratings

Original Manuscript: November 9, 2010
Revised Manuscript: December 22, 2010
Manuscript Accepted: January 18, 2011
Published: February 28, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

Xiao Ming Goh, Ling Lin, and Ann Roberts, "Plasmonic lenses for wavefront control applications using two-dimensional nanometric cross-shaped aperture arrays," J. Opt. Soc. Am. B 28, 547-553 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol.  111 of Springer Tracts in Modern Physics (Springer, 1988).
  2. H. Gao, J. K. Hyun, M. H. Lee, J.-C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10, 4111–4116 (2010). [CrossRef] [PubMed]
  3. F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8, 2469–2472 (2008). [CrossRef] [PubMed]
  4. F. M. Huang and N. I. Zheludev, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90, 091119 (2007). [CrossRef]
  5. F. J. García-Vidal, O. Lyandres, S. Enoch, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003). [CrossRef] [PubMed]
  6. Y. Liu, H. Shi, C. Wang, C. Du, and X. Luo, “Multiple directional beaming effect of metallic subwavelength slit surrounded by periodically corrugated grooves,” Opt. Express 16, 4487–4493 (2008). [CrossRef] [PubMed]
  7. Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007). [CrossRef]
  8. J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14, 5664–5670 (2006). [CrossRef] [PubMed]
  9. Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642–644 (2004). [CrossRef]
  10. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13, 6815–6820 (2005). [CrossRef] [PubMed]
  11. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009). [CrossRef]
  12. Y. Zhao, S.-C. S. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express 18, 23458–23465 (2010). [CrossRef] [PubMed]
  13. Q. Chen and D. R. S. Cumming, “Visible light focusing demonstrated by plasmonic lenses based on nano-slits in an aluminum film,” Opt. Express 18, 14788–14793 (2010). [CrossRef] [PubMed]
  14. Y. Chen, C. Zhou, X. Luo, and C. Du, “Structured lens formed by a 2D square hole array in a metallic film,” Opt. Lett. 33, 753–755 (2008). [CrossRef] [PubMed]
  15. C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett. 91, 063108 (2007). [CrossRef]
  16. S. M. Orbons, M. I. Haftel, C. Schlockermann, D. Freeman, M. Milicevic, T. J. Davis, B. Luther-Davies, D. N. Jamieson, and A. Roberts, “Dual resonance mechanisms facilitating enhanced optical transmission in coaxial waveguide arrays,” Opt. Lett. 33, 821–823 (2008). [CrossRef] [PubMed]
  17. X. M. Goh, L. Lin, and A. Roberts, “Planar focusing elements using spatially varying near-resonant aperture arrays,” Opt. Express 18, 11683–11688 (2010). [CrossRef] [PubMed]
  18. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10, 1936–1940 (2010). [CrossRef] [PubMed]
  19. L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: single apertures versus periodic arrays,” Appl. Phys. Lett. 95, 201116 (2009). [CrossRef]
  20. COMSOL Multi-physics, http://www.comsol.com/.
  21. E. Hecht, Optics (Addison Wesley, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited