OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 596–601

Ellipsoid of the polarization degree: a vectorial, pure operatorial Pauli algebraic approach

Tiberiu Tudor and Vladimir Manea  »View Author Affiliations

JOSA B, Vol. 28, Issue 4, pp. 596-601 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (325 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In the frame of a vectorial, pure operatorial (nonmatrix) Pauli algebraic approach to the action of the polarization devices on the polarized incident light, we obtain the analytic equation of the ellipsoid into which a deterministic device deforms any Poincaré sphere corresponding to incident light of a given degree of polarization. On the basis of this equation, some graphical representations of the ellipsoid of the output polarization states are given, offering a better characterization of the global action of deterministic devices.

© 2011 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(260.0260) Physical optics : Physical optics
(260.2130) Physical optics : Ellipsometry and polarimetry
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

Original Manuscript: July 22, 2010
Revised Manuscript: November 8, 2010
Manuscript Accepted: December 13, 2010
Published: March 2, 2011

Tiberiu Tudor and Vladimir Manea, "Ellipsoid of the polarization degree: a vectorial, pure operatorial Pauli algebraic approach," J. Opt. Soc. Am. B 28, 596-601 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. A. Shurcliff, Polarized Light (Harvard University, 1969).
  2. R. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1996).
  3. C. Brosseau, Fundamentals of Polarized Light (Wiley, 1998).
  4. J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J. Appl. Phys. 40, 1–47 (2007). [CrossRef]
  5. S. R. Cloude, “Group theory and polarization algebra,” Optik (Jena) 75, 26–36 (1986).
  6. B. DeBoo, J. Sasian, and R. Chipman, “Degree of polarization surfaces and maps for analysis of depolarization,” Opt. Express 12, 4941–4958 (2004). [CrossRef] [PubMed]
  7. M. W. Williams, “Depolarization and cross polarization in ellipsometry of rough surfaces,” Appl. Opt. 25, 3616–3622 (1986). [CrossRef] [PubMed]
  8. C. Brosseau, “Mueller matrix analysis of light depolarization by linear optical medium,” Opt. Commun. 131, 229–235 (1996). [CrossRef]
  9. J. Ellis and A. Dogariu, “Differentiation of globally unpolarized complex random fields,” J. Opt. Soc. Am. A 21, 988–993 (2004). [CrossRef]
  10. Shih-Yau Lu and R. A. Chipman, “Mueller matrices and the degree of polarization,” Opt. Commun. 146, 11–14 (1998). [CrossRef]
  11. J. W. Hovenier and C. V. M. van der Mee, “Bounds for the degree of polarization,” Opt. Lett. 20, 2454–2456 (1995). [CrossRef] [PubMed]
  12. R. Simon, “Nondepolarizing systems and degree of polarization,” Opt. Commun. 77, 349–354 (1990). [CrossRef]
  13. J. J. Gil and E. Bernabeu, “Obtainment of the polarizing and retardation parameters of a non-depolarizing optical system from the polar decomposition of its Mueller matrix,” Optik (Jena) 76, 67–71 (1987).
  14. S.-Y. Lu and R. A. Chipman, “Homogeneous and inhomogeneous Jones matrices,” J. Opt. Soc. Am. A 11, 766–773 (1994). [CrossRef]
  15. P. K. Aravind, “Simulating the Wigner angle with a parametric amplifier,” Phys. Rev. A 42, 4077–4084 (1990). [CrossRef] [PubMed]
  16. S. V. Savenkov, O. Sydoruk, and R. S. Muttiah, “Conditions for polarization elements to be dichroic and birefringent,” J. Opt. Soc. Am. A 22, 1447–1452 (2005). [CrossRef]
  17. T. Opatrnỳ and J. Peřina, “Non-image-forming polarization optical devices and Lorentz transformations—an analogy,” Phys. Lett. A 181, 199–202 (1993). [CrossRef]
  18. A. A. Chernyshov, Ch. V. Felde, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Vector singularities of the combined beams assembled from mutually incoherent orthogonally polarized components,” J. Opt. A Pure Appl. Optics 11, 094010 (2009). [CrossRef]
  19. P. V. Polyanskii, “Complex degree of mutual polarization, generalized Malus law, and optics of observable quantities,” Proc. SPIE 6254, 625405 (2006). [CrossRef]
  20. O. V. Angelsky, S. G. Hanson, C. Y.Zenkova, M. P. Gorsky, and N. V. Gorodyns’ka, “On polarization metrology (estimation) of the degree of coherence of optical waves,” Opt. Express 17, 15623–15634 (2009). [CrossRef] [PubMed]
  21. O. V. Angelsky, S. B. Yermolenko, C. Y.Zenkova, and A. O. Angelskaya, “Polarization manifestations of correlation (intrinsic coherence) of optical fields,” Appl. Opt. 47, 5492–5499 (2008). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited