OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 608–612

Integrated noncollinear red–green–blue laser light source using a two-dimensional nonlinear photonic quasicrystal

Lina Zhao, Zhen Qi, Ye Yuan, Jun Lu, Yanhua Liu, Changdong Chen, Xinjie Lv, Zhenda Xie, Xiaopeng Hu, Gang Zhao, Ping Xu, and Shining Zhu  »View Author Affiliations

JOSA B, Vol. 28, Issue 4, pp. 608-612 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (546 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a noncollinear red–green–blue (RGB) laser light source using a two-dimensional nonlinear photonic quasicrystal. The red and blue lights result from a green light pumped optical parametric generation process cascading two frequency doubling processes in a single-pass setup. Together with the residual green light, two sets of RGB lights were observed in a wide temperature range, which indicates a practical method for constructing a compact multiwavelength laser light source.

© 2011 Optical Society of America

OCIS Codes
(140.7300) Lasers and laser optics : Visible lasers
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

ToC Category:
Nonlinear Optics

Original Manuscript: November 19, 2010
Revised Manuscript: January 17, 2011
Manuscript Accepted: January 18, 2011
Published: March 2, 2011

Lina Zhao, Zhen Qi, Ye Yuan, Jun Lu, Yanhua Liu, Changdong Chen, Xinjie Lv, Zhenda Xie, Xiaopeng Hu, Gang Zhao, Ping Xu, and Shining Zhu, "Integrated noncollinear red–green–blue laser light source using a two-dimensional nonlinear photonic quasicrystal," J. Opt. Soc. Am. B 28, 608-612 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  2. M. M. Fejer, G. A. Magel, D. H. Hundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]
  3. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997). [CrossRef]
  4. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993). [CrossRef]
  5. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997). [CrossRef]
  6. S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997). [CrossRef]
  7. Y. S. Kivshar, A. A. Sukhorukov, and S. M. Saltiel, “Two-color multistep cascading and parametric soliton-induced waveguides,” Phys. Rev. E 60, R5056–R5059 (1999). [CrossRef]
  8. P. C. Pooser and O. Pfister, “Observation of triply coincident nonlinearities in periodically poled KTiOPO4,” Opt. Lett. 30, 2635–2637 (2005). [CrossRef] [PubMed]
  9. O. Pfister, S. Feng, G. Jennings, R. Pooser, and D. Xie, “Multipartite continuous-variable entanglement from concurrent nonlinearities,” Phys. Rev. A 70, 020302 (2004). [CrossRef]
  10. V. Berger, ““Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998). [CrossRef]
  11. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000). [CrossRef] [PubMed]
  12. P. G. Ni, B. Q. Ma, X. H. Wang, B. Y. Cheng, and D. Z. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett. 82, 4230–4232 (2003). [CrossRef]
  13. L.-H. Peng, C.-C. Hsu, and Y.-C. Shih, “Second-harmonic green generation from two-dimensional χ(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83, 3447–3449 (2003). [CrossRef]
  14. N. Fujioka, S. Ashihara, H. Ono, T. Shimura, and K. Kuroda, “Cascaded third-harmonic generation of ultrashort optical pulses in two-dimensional quasi-phase-matching gratings,” J. Opt. Soc. Am. B 24, 2394–2405 (2007). [CrossRef]
  15. P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93, 133904 (2004). [CrossRef] [PubMed]
  16. P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu, “Frequency self-doubling optical parametric amplification: noncollinear red-green-blue light-source generation based on a hexagonally poled lithium tantalate,” Opt. Lett. 33, 2791–2793 (2008). [CrossRef] [PubMed]
  17. R. Penrose, in The Physics of Quasicrystals, P.J.Steinhardt and S.Ostund, eds. (World Scientific, 1987), App. I.
  18. B. Q. Ma, T. Wang, Y. Sheng, P. G. Ni, Y. Q. Wang, B. Y. Cheng, and D. Z. Zhang, “Quasiphase matched harmonic generation in a two-dimensional octagonal photonic superlattice,” Appl. Phys. Lett. 87, 251103 (2005). [CrossRef]
  19. R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick, K. Gallo, and R. Lewen, “Harmonic generation in a two-dimensional nonlinear quasi-crystal,” Opt. Lett. 30, 424–426 (2005). [CrossRef] [PubMed]
  20. R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005). [CrossRef] [PubMed]
  21. D. A. Rabson, T.-L. Ho, and N. D. Mermin, “Aperiodic tilings with non-symmorphic space groups p2jgm,” Acta Crystallogr. 44, 678–688 (1988). [CrossRef]
  22. F. Gahler and J. Rhyner, “Equivalence of the generalized grid and projection methods for the construction of quasiperiodic tilings,” J. Phys. A 19, 267–277 (1986). [CrossRef]
  23. A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, “Experimental confirmation of the general solution to the multiple-phase-matching problem,” J. Opt. Soc. Am. B 24, 1916–1921(2007). [CrossRef]
  24. A. Bahabad, A. Ganany-Padowicz, and A. Arie, “Enginneering two-dimensional nonlinear photonic quasi-crystals,” Opt. Lett. 33, 1386–1388 (2008). [CrossRef] [PubMed]
  25. J. E. S. Socolar, P. J. Sternhardt, and D. Levine, “Quasicrystals with arbitrary orientational symmetry,” Phys. Rev. B 32, 5547–5550 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited