OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 629–636

Extraordinary transmission of a thick film with a periodic structure consisting of strongly dispersive materials

Ma Luo and Qing Huo Liu  »View Author Affiliations

JOSA B, Vol. 28, Issue 4, pp. 629-636 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (568 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Enhanced reflections and transmissions by slabs of periodic structures with strongly dispersive materials have recently received significant attention because of their unusual physical phenomena and potential engineering applications. To simulate such phenomena for design prototyping with high efficiency, a spectral element method is developed to calculate the electromagnetic fields in a slab of periodic three-dimensional photonic crystal consisting of dispersive or nondispersive materials. The method of moments with the spectral-domain periodic Green’s function is used to truncate the computational domain above and below the photonic crystal slabs. The accuracy of the method is verified. The method is used to calculate the scattering properties of an array of air holes in a dispersive metallic film in optical frequencies. The surface plasmon polariton and local surface plasmon modes are identified, with excellent correlation with experimental results.

© 2011 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(160.5298) Materials : Photonic crystals

ToC Category:

Original Manuscript: August 12, 2010
Revised Manuscript: January 3, 2011
Manuscript Accepted: January 4, 2011
Published: March 4, 2011

Ma Luo and Qing Huo Liu, "Extraordinary transmission of a thick film with a periodic structure consisting of strongly dispersive materials," J. Opt. Soc. Am. B 28, 629-636 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Lin, R. J. Reeves, and R. J. Blaikie, “Surface-plasmon-enhanced light transmission through planar metallic films,” Phys. Rev. B 74, 155407 (2006). [CrossRef]
  2. A. Mary, S. G. Rodrigo, L. Martn-Moreno, and F. J. Garca-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007). [CrossRef]
  3. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005). [CrossRef] [PubMed]
  4. I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett. 103, 213902(2009). [CrossRef]
  5. T. Koschny, P. Marko, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71, 245105 (2005). [CrossRef]
  6. D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]
  7. C. J. Alleyne, A. G. Kirk, R. C. McPhedran, N.-A. P. Nicorovici, and D. Maystre, “Enhanced SPR sensitivity using periodic metallic structures,” Opt. Express 15, 8163–8169 (2007). [CrossRef] [PubMed]
  8. K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737–3742 (2005). [CrossRef] [PubMed]
  9. K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26, 1472–1478 (2008). [CrossRef]
  10. J. Chen, Z. Li, S. Yue, and Q. Gong, “Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides,” Opt. Express 17, 23603–23609(2009). [CrossRef]
  11. A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2000).
  12. B. G. Ward, “Finite element analysis of photonic crystal rods with inhomogeneous anisotropic refractive index tensor,” IEEE J. Quantum Electron. 44, 150–156 (2008). [CrossRef]
  13. P. Sotirelis and J. D. Albrecht, “Numerical simulation of photonic crystal defect modes using unstructured grids and Wannier functions,” Phys. Rev. B 76, 075123 (2007). [CrossRef]
  14. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986). [CrossRef]
  15. G. C. Cohen, Higher-Order Numerical Methods for Transient Wave Equations (Springer, 2001).
  16. J.-H. Lee and Q. H. Liu, “An efficient 3-D spectral element method for Schrodinger equation in nanodevice simulation,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24, 1848–1858(2005). [CrossRef]
  17. J.-H. Lee, T. Xiao, and Q. H. Liu, “A 3-D spectral-element method using mixed-order curl conforming vector basis functions for electromagnetic fields,” IEEE Trans. Microwave Theory Tech. 54, 437–444 (2006). [CrossRef]
  18. A. T. Patera, “A spectral element method for fluid dynamics: laminar flow in a channel expansion,” J. Comput. Phys. 54, 468–488 (1984). [CrossRef]
  19. J.-H. Lee and Q. H. Liu, “A 3-D spectral-element time-domain method for electromagnetic simulation,” IEEE Trans. Microwave Theory Tech. 55, 983–991 (2007). [CrossRef]
  20. Q. H. Liu, “The PSTD algorithm: a time-domain method requiring only two cells per wavelength,” Microw. Opt. Technol. Lett. 15, 158–165 (1997). [CrossRef]
  21. Q. H. Liu, “A pseudospectral frequency-domain (PSFD) method for computational electromagnetics,” IEEE Antenn. Wireless Propag. Lett. 1, 131–134 (2002). [CrossRef]
  22. M. Luo and Q. H. Liu, “Spectral element method for band structures of three-dimensional anisotropic photonic crystals,” Phys. Rev. E 80, 056702 (2009). [CrossRef]
  23. M. Luo, Q. H. Liu, and Z. Li, “Spectral element method for band structures of two-dimensional anisotropic photonic crystals,” Phys. Rev. E 79, 026705 (2009). [CrossRef]
  24. M. Luo, Q. H. Liu, and J. Guo, “A spectral element method calculation of extraordinary light transmission through periodic subwavelength slits,” J. Opt. Soc. Am. B 27, 560–566(2010). [CrossRef]
  25. M. Luo and Q. H. Liu, “Accurate determination of band structures of two-dimensional dispersive anisotropic photonic crystals by the spectral element method,” J. Opt. Soc. Am. A 26, 1598–1605 (2009). [CrossRef]
  26. M. N. Vouvakis, S.-C. Lee, K. Zhao, and J.-F. Lee, “A symmetric FEM-IE formulation with a single-level IE-QR algorithm for solving electromagnetic radiation and scattering problems,” IEEE Trans. Antenn. Propag. 52, 3060–3070 (2004). [CrossRef]
  27. M. M. Botha and J.-M. Jin, “On the variational formulation of hybrid finite element-boundary integral techniques for electromagnetic analysis,” IEEE Trans. Antenn. Propag. 52, 3037–3047 (2004). [CrossRef]
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  29. G. Granet and L. Li, “Convincingly converged results for highly conducting periodically perforated thin films with square symmetry,” J. Opt. A 8, 546–549 (2006). [CrossRef]
  30. D. Lockau, L. Zschiedrich, and S. Burger, “Accurate simulation of light transmission through subwavelength apertures in metal films,” J. Opt. A Pure Appl. Opt. 11, 114013 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited