OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 637–648

Information-theoretic approach to Fourier transform spectrometry

Alessandro Barducci  »View Author Affiliations


JOSA B, Vol. 28, Issue 4, pp. 637-648 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000637


View Full Text Article

Enhanced HTML    Acrobat PDF (840 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a specific bandpass sampling procedure that provides high efficiency for interferogram sampling. This new approach is able to mitigate the important radiometric and noise disadvantages of Fourier transform spectrometry that recent theoretical investigations have pointed out. Proof of concept is given using simulations and measurements performed with a Sagnac triangular interferometer. Adopting an information-theoretic approach to spectrometry, we demonstrate the existence of important limitations to the radiometric efficiency achieved by any interferential or dispersive multiplex spectrometers. We find an extension to optics of the well-known data processing inequality, confirming that the Fellgett (multiplex) advantage is an inappropriate expectation. We give evidence of radiometric disadvantages implicit in the coded aperture architecture typical of compressive sensing.

© 2011 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(300.6190) Spectroscopy : Spectrometers
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(110.3055) Imaging systems : Information theoretical analysis

ToC Category:
Spectroscopy

History
Original Manuscript: September 14, 2010
Revised Manuscript: December 28, 2010
Manuscript Accepted: December 28, 2010
Published: March 8, 2011

Citation
Alessandro Barducci, "Information-theoretic approach to Fourier transform spectrometry," J. Opt. Soc. Am. B 28, 637-648 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-4-637


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Fellgett, “The multiplex advantage,” Ph.D. dissertation (University of Cambridge, 1951).
  2. M. J. E. Golay, “Multislit spectrometry,” J. Opt. Soc. Am. 39, 437–444 (1949). [CrossRef] [PubMed]
  3. M. E. Gehm, S. T. McCain, N. P. Pitsianis, D. J. Brady, P. Potuluri, and M. E. Sullivan, “Static two-dimensional aperture coding for multimodal, multiplex spectroscopy,” Appl. Opt. 45, 2965–2973(2006). [CrossRef] [PubMed]
  4. A. Barducci, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Theoretical aspects of Fourier transform spectrometry and common path triangular interferometers,” Opt. Express 18, 11622–11649 (2010). [CrossRef] [PubMed]
  5. A. Barducci, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Radiometric and SNR properties of multiplex dispersive spectrometry,” Appl. Opt. 49, 5366–5373 (2010). [CrossRef] [PubMed]
  6. T. Okamoto, S. Kawata, and S. Minami, “Optical method for resolution enhancement in photodiode array Fourier transform spectroscopy,” Appl. Opt. 24, 4221–4225 (1985). [CrossRef] [PubMed]
  7. R. L. Hilliard and G. G. Shefferd, “Wide-angle Michelson interferometer for measuring Doppler line widths,” J. Opt. Soc. Am. 56, 362–369 (1966). [CrossRef]
  8. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423 (1948).
  9. D. A. Walmsley, T. A. Clark, and R. E. Jennings, “Correction of off-center sampled interferograms by a change of origin in the Fourier transform: the important effect of overlapping aliases,” Appl. Opt. 11, 1148–1151 (1972). [CrossRef] [PubMed]
  10. J. Connes and P. Connes, “Near-infrared planetary spectra by Fourier spectroscopy. I. instruments and results,” J. Opt. Soc. Am. 56, 896–910 (1966). [CrossRef]
  11. F. Cavallini, “The Italian panoramic monochromator,” Astron. Astrophys. 128, 589–598 (1998). [CrossRef]
  12. M. Mazzoni, P. Falorni, and S. Del Bianco, “Sun-induced leaf fluorescence retrieval in the O2-B atmospheric absorption band,” Opt. Express 16, 7014–7022 (2008). [CrossRef] [PubMed]
  13. R. J. Vaughan, N. L. Scott, and D. R. White, “The theory of bandpass sampling,” IEEE Trans. Signal Process. 39, 1973–1984(1991). [CrossRef]
  14. S. H. Nawab, T. F. Quatieri, and J. S. Lim, “Signal reconstruction from short-time Fourier transform magnitude,” IEEE Trans. Acoust. Speech Signal Process. 31, 986–998 (1983). [CrossRef]
  15. P. L. Dragotti and M. Vetterli, “Wavelet footprints: theory, algorithms, and applications,” IEEE Trans. Signal Process. 51, 1306–1323 (2003). [CrossRef]
  16. A. Barducci, A. Casini, F. Castagnoli, P. Marcoionni, M. Morandi, and I. Pippi, “Performance assessment of a stationary interferometer for high-resolution remote sensing,” Proc. SPIE 4725, 547–555 (2002). [CrossRef]
  17. R. Zamir, “A proof of the Fisher information inequality via a data processing argument,” IEEE Trans. Inf. Theory 44, 1246–1250(1998). [CrossRef]
  18. T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, 1991). [CrossRef]
  19. S. T. McCain, M. E. Gehm, Y. Wang, N. P. Pitsianis, and D. J. Brady, “Coded aperture Raman spectroscopy for quantitative measurements of ethanol in a tissue phantom,” Appl. Spectrosc. 60, 663–671 (2006). [CrossRef] [PubMed]
  20. N. J. A. Sloane, T. Fine, P. G. Phillips, and M. Harwit, “Codes for multiplex spectrometry,” Appl. Opt. 8, 2103–2106 (1969). [CrossRef] [PubMed]
  21. M. Harwit, P. G. Phillips, T. Fine, and N. J. A. Sloane, “Doubly multiplexed dispersive spectrometers,” Appl. Opt. 9, 1149–1154(1970). [CrossRef] [PubMed]
  22. P. B. Fellgett, “Conclusions on multiplex methods,” J. Phys. Colloq. 165–171 (1967). [CrossRef]
  23. P. B. Fellgett, “A propos de la théorie du spectromètre interférentiel multiplex,” J. Phys. Rad. 187–191 (1958). [CrossRef]
  24. P. B. Fellgett, “The nature and origin of multiplex Fourier spectrometry,” Notes Rec. Roy. Soc. 60, 91–93 (2006). [CrossRef]
  25. E. E. Fenimore and T. M. Cannon, “Coded aperture imaging with uniformly redundant arrays,” Appl. Opt. 17, 337–347 (1978). [CrossRef] [PubMed]
  26. A. Bushboom, H. D. Schotten, and H. Elders-Boll, “Coded aperture imaging with multiple measurements,” J. Opt. Soc. Am. 14, 1058–1065 (1997). [CrossRef]
  27. M. E. Gehm, R. John, D. J. Brady, R. M. Willet, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15, 14013–14027 (2007). [CrossRef] [PubMed]
  28. A. Wagadarikar, R. John, R. Willet, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47, B44–B51 (2008). [CrossRef] [PubMed]
  29. H. Arguello and G. Arce, “Code aperture design for compressive spectral imaging,” Proceedings of the 18th European Signal Processing Conference (EUSIPCO-2010) (EURASIP, 2010), pp. 23–27.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited