OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 649–657

Effect of solvent on the up- and downconversion emissions of Y 2 O 3 : Yb 3 + Er 3 + nanofibers synthesized by a hydrothermal method

Jorge Oliva, Octavio Meza, Luis A. Diaz-Torres, Pedro Salas, Elder De la Rosa, Anatolio Martinez, and Carlos Angeles-Chavez  »View Author Affiliations


JOSA B, Vol. 28, Issue 4, pp. 649-657 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000649


View Full Text Article

Enhanced HTML    Acrobat PDF (730 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the structural, morphological, and luminescent properties of Y 2 O 3 : Yb 3 + ( 2 % ) Er 3 + ( 1 % ) nanofibers synthesized by a hydrothermal method as a function of the solvent composition ethanol/water. The average length and diameter of the nanofibers ranges from 1.1 to 2.3 μm , and from 50 to 110 nm , respectively. A cubic crystalline structure was obtained, and no effect of the solvent was observed. However, the increment of OHs, because of the increment of water, modifies the quality of the nanofibers. Such impurities improve the emission bands under 940 and 490 nm excitation, especially the red band, via multiphonon relaxation. Relaxation dynamics is explained, based on direct and back energy transfer, multiphonon relaxation, and cross-relaxation. The direct energy transfer coefficients ( C b 2 , C b 4 , and C b 5 ) calculated by the proposed theoretical model point out the fact that upconverted emissions are notably favored by the increment of OHs. The energy backtransfer ( C 5 b ) and cross-relaxation ( C 51 ) coefficients depend only on the ion concentration and not on the OH content.

© 2011 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.5690) Materials : Rare-earth-doped materials
(190.7220) Nonlinear optics : Upconversion
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(160.4236) Materials : Nanomaterials

ToC Category:
Materials

History
Original Manuscript: June 11, 2010
Revised Manuscript: December 22, 2010
Manuscript Accepted: January 1, 2011
Published: March 9, 2011

Citation
Jorge Oliva, Octavio Meza, Luis A. Diaz-Torres, Pedro Salas, Elder De la Rosa, Anatolio Martinez, and Carlos Angeles-Chavez, "Effect of solvent on the up- and downconversion emissions of Y2O3:Yb3+−Er3+ nanofibers synthesized by a hydrothermal method," J. Opt. Soc. Am. B 28, 649-657 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-4-649


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15, 353–389 (2003). [CrossRef]
  2. W. J. Kim, M. Nyk, and P. N. Prasad, “Color-coded multilayer photopatterned microstructures using lanthanide (III) ion co-doped NaYF4 nanoparticles with upconversion luminescence for possible applications in security,” Nanotechnology 20, 185301 (2009). [CrossRef] [PubMed]
  3. F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hon, and X. Liu, “Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping,” Nature 463, 1061–1065 (2010). [CrossRef] [PubMed]
  4. H. K. Jung, J. S. Oh, S. Seok, and T. H. Lee, “Preparation and luminescence properties of LaPO4:Er,Yb nanoparticles,” J. Lumin. 114, 307–313 (2005). [CrossRef]
  5. D. Solís, T. López-Luke, E. De la Rosa, P. Salas, and C. Angeles-Chavez, “Surfactant effect on the upconversion emission and decay time of ZrO2:Yb–Er nanocrystals,” J. Lumin. 129, 449–455 (2009). [CrossRef]
  6. J. F. Suyver, J. Grimm, K. W. Krämer, and H. U. Güdel, “Highly efficient near-infrared to visible up-conversion process in NaYF4:Er3+,Yb3+,” J. Lumin. 114, 53–59 (2005). [CrossRef]
  7. M. Wang, C. C. Mi, J. L. Liu, X. L. Wu, Y. X. Zhang, W. Hou, F. Li, and S. K. Xu, “One-step synthesis and characterization of water-soluble NaYF4:Yb,Er/polymer nanoparticles with efficient up-conversion fluorescence,” J. Alloys Compd. 485, L24–L27(2009). [CrossRef]
  8. A. M. Pires, O. A. Serra, and M. R. Davolos, “Yttrium oxysulfide nanosized spherical particles doped with Yb and Er or Yb and Tm: efficient materials for up-converting phosphor technology field,” J. Alloys Compd. 374, 181–184 (2004). [CrossRef]
  9. L. Aarts, B. M. van der Ende, and A. Meijerink, “Downconversion for solar cells in NaYF4:Er,Yb,” J. Appl. Phys. 106, 023522(2009). [CrossRef]
  10. A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: up-conversion,” Solar Energy Mater. Sol. Cells 91, 829–842 (2007). [CrossRef]
  11. C. Ronda, “Luminescent materials with quantum efficiency larger than 1, status and prospects,” J. Lumin. 100, 301–305 (2002). [CrossRef]
  12. R. T. Wegh, H. Donker, E. V. D. van Loef, K. D. Oskam, and A. Meijerink, “Quantum cutting through downconversion in rare-earth compounds,” J. Lumin. 87, 1017–1019 (2000). [CrossRef]
  13. T. K. Anh, P. Benalloul, C. Barthou, L. K. Giang, N. Vu, and L. Q. Minh, “Luminescence, energy transfer, and upconversion mechanisms of Y2O3 nanomaterials doped with Eu3+, Tb3+, Tm3+, Er3+, and Yb3+ ions,” J. Nanomater. 2007, 1–10 (2007). [CrossRef]
  14. A. O. G. Dikovska, P. A. Atanasov, M. Jimenez de Castro, A. Perea, J. Gonzalo, C. N. Afonso, and J. Garcia Lopez, “Optically active Er3+–Yb3+ codoped Y2O3 films produced by pulsed laser deposition,” Thin Solid Films 500, 336–340 (2006). [CrossRef]
  15. A. Huignard, A. Aron, P. Aschehoug, B. Viana, J. Thery, A. Laurent, and J. Perriere, “Growth by laser ablation of Y2O3 and Tm:Y2O3 thin films for optical applications,” J. Mater. Chem. 10, 549–554 (2000). [CrossRef]
  16. F. Vetrone, J. C. Boyer, J. Capobianco, A. Speghini, and M. Bettinelli, “Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+,Yb3+ nanocrystals,” J. Appl. Phys. 96, 661–667 (2004). [CrossRef]
  17. L. Yanhong, Z. Yongming, H. Guangyan, and Y. Yingning, “Upconversion luminescence of Y2O3:Er3+,Yb3+ nanoparticles prepared by a homogeneous precipitation method,” J. Rare Earths 26, 450–454 (2008). [CrossRef]
  18. H. Guo and Y. M. Qiao, “Preparation, characterization, and strong upconversion of monodisperse Y2O3:Er3+,Yb3+ microspheres,” Opt. Mater. 31, 583–589 (2009). [CrossRef]
  19. A. M. Pires, O. A. Serra, S. Heer, and H. U. Güdel, “Low-temperature upconversion spectroscopy of nanosized Y2O3:Er,Yb phosphor,” J. Appl. Phys. 98, 063529 (2005). [CrossRef]
  20. G. De, W. Qin, J. Zhang, J. Zhang, Y. Wang, C. Cao, and Y. Cui, “Upconversion luminescence properties of Y2O3:Yb3+,Er3+ nanostructures,” J. Lumin. 119, 258–263 (2006). [CrossRef]
  21. A. Martinez, J. Moralesa, P. Salas, C. Angeles-Chavez, L. A. Diaz-Torres, and E. De la Rosa, “Synthesis and photoluminescence of Y2O3:Yb3+–Er3+ nanofibers,” Microelectron. J. 39, 551–555(2008). [CrossRef]
  22. A. Martinez, J. Morales, P. Salas, C. Angeles-Chavez, L. A. Díaz-Torres, and E. De la Rosa Cruz, “Role of the hydrothermal synthesis conditions on the structure and morphology of co-doped Y2O3:Yb3+–Er3+ nanostructured materials,” J. Nano Research 9, 109–116 (2010). [CrossRef]
  23. R. Srinivasan, R. Yogamalar, and A. C. Bose, “Synthesis and structural studies on nanocrystalline yttrium oxide,” Adv. Sci. Lett. 2, 65–69 (2009). [CrossRef]
  24. J. Wang, W. Miao, Y. Li, H. Yao, and Z. Li, “Water-soluble Ln3+-doped calcium fluoride nanocrystals: controlled synthesis and luminescence properties,” Mat. Lett. 63, 1794–1796(2009). [CrossRef]
  25. H. Liang, G. Chen, H. Liu, and Z. Zhang, “Ultraviolet upconversion luminescence enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals induced by tridoping with Li+ ions,” J. Lumin. 129, 197–202 (2009). [CrossRef]
  26. J. A. Capobianco, F. Vetrone, T. Dialesio, G. Tessari, A. Speghini, and M. Bettinelli, “Optical spectroscopy of nanocrystalline cubic Y2O3:Er3+ obtained by combustion synthesis”, Phys. Chem. Chem. Phys. 2, 3203–3207 (2000). [CrossRef]
  27. G. De, W. Qin, J. Zhang, J. Zhang, Y. Wang, C. Cao, and Y. Cui, “Effect of OH− on the upconversion luminescent efficiency of Y2O3:Yb3+,Er3+ nanostructures,” Sol. State Comm. 137, 483–487 (2006). [CrossRef]
  28. L. Zhang and H. Hu, “The effect of OH− on IR emission of Nd3+,Yb3+ and Er3+ doped tetraphosphate glasses,” J. Phys. Chem. Solids 63, 575–579 (2002). [CrossRef]
  29. L. Cheng-Ren, X. Wei, D. Bin, L. Shu-Feng, D. Jian-Hua, C. Yu-Qi, and Y. Hai-Tao, “Up-conversion photoluminescence characteristics of Yb3+:Er3+:Tm3+ co-doped borosilicate glasses,” Chin. Phys. B 19, 047801 (2010). [CrossRef]
  30. L. X. Yi, M. Wang, S. Y. Feng, Y. K. Chen, G. N. Wang, L. L. Hu, and J. J. Zhang, “Emissions properties of Ho3+:I75→I85 transition sensitized by Er3+ and Yb3+ in fluorophosphate glasses,” Opt. Mat. 31, 1586–1590 (2009). [CrossRef]
  31. T. F. Coleman and Y. Li, “An interior trust region approach for nonlinear minimization subject to bounds,” SIAM J. Optim. 6, 418–445 (1996). [CrossRef]
  32. R. H. Byrd, M. E. Hribar, and J. Nocedal, “An interior point algorithm for large-scale nonlinear programming,” SIAM J. Optim. 9, 877–900 (1999). [CrossRef]
  33. L. Laversenne, Y. Guyot, C. Goutaudier, M. Th. Cohen-Adad, and G. Boulon, “Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3,” Opt. Mat. 16, 475–483 (2001). [CrossRef]
  34. M. J. Weber, “Radiative and multiphonon relaxation of rare earth ions in Y2O3,” Phys. Rev. 171, 283–291 (1968). [CrossRef]
  35. J. A. Capobianco, F. Vetrone, and J. C. Boyer, “Enhancement of red emission (F9/24→I15/24) via upconversion in bulk and nanocrystalline cubic Y2O3:Er3+,” J. Phys. Chem. B 106, 1181–1187 (2002). [CrossRef]
  36. Y. Cong, B. Li, B. Lei, X. Wang, C. Liu, J. Liu, and W. Li, “Enhancement of luminescence intensity and increase of emission lifetime in Eu3+-doped 3CdO–Al2O3–3SiO2 amorphous system,” J. Lumin. 128, 105–109 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited