OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 658–666

Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings

C. E. Close, M. R. Gleeson, and J. T. Sheridan  »View Author Affiliations


JOSA B, Vol. 28, Issue 4, pp. 658-666 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000658


View Full Text Article

Enhanced HTML    Acrobat PDF (992 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For photopolymers, knowing the rate of diffusion of the active monomer is important when modeling the material evolution during recording in order to understand and optimize their performance. Unfortunately, a confusingly wide range of values have been reported in the literature. Re-examining these results, experiments are carried out for both coverplated (sealed) and uncoverplated material layers and the measurements are analyzed using appropriate models. In this way, a more detailed analysis of the diffraction processes taking place for large-period gratings is provided. These results, combined with those in Part II, provide unambiguous evidence that the monomer diffusion rate in a commonly used acrylamide polyvinyl alcohol-based material is of the order of 10 10 cm 2 / s . This value closely agrees with the predictions of the nonlocal polymerization-driven diffusion model.

© 2011 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(050.7330) Diffraction and gratings : Volume gratings
(090.0090) Holography : Holography
(090.2900) Holography : Optical storage materials
(160.5470) Materials : Polymers

ToC Category:
Holography

History
Original Manuscript: October 12, 2010
Revised Manuscript: December 21, 2010
Manuscript Accepted: December 24, 2010
Published: March 9, 2011

Citation
C. E. Close, M. R. Gleeson, and J. T. Sheridan, "Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings," J. Opt. Soc. Am. B 28, 658-666 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-4-658


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Ashley, M. P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44, 341–368 (2000). [CrossRef]
  2. F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40, 4129–4132(2005). [CrossRef]
  3. G. P. Nordinand and A. R. Tanguay, Jr., “Photopolymer-based stratified volume holographic optical elements,” Opt. Lett. 17, 1709–1711 (1992). [CrossRef] [PubMed]
  4. R. K. Kostuk, J. Castro, and D. Zhang, “Holographic low concentration ratio solar concentrators,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB3.
  5. J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407(2006). [CrossRef] [PubMed]
  6. A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt. 46, 295–301 (2007). [CrossRef] [PubMed]
  7. M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Lui, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007). [CrossRef]
  8. M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modelling,” J. Opt. Soc. Am. B 26, 1736–1745 (2009). [CrossRef]
  9. M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009). [CrossRef]
  10. S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462–9472 (2010). [CrossRef]
  11. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939(1994). [CrossRef]
  12. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000). [CrossRef]
  13. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. A: Pure Appl. Opt. 3, 20–25 (2001). [CrossRef]
  14. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Adjusted intensity non-local diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19, 621–629 (2002). [CrossRef]
  15. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Comparison of holographic photopolymer materials by use of analytic non-local diffusion models,” Appl. Opt. 41, 845–852 (2002). [CrossRef] [PubMed]
  16. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Niepp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerisation-driven diffusion model,” Opt. Express 13, 6990–7004 (2005). [CrossRef] [PubMed]
  17. J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerisation-driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407–416 (2005). [CrossRef]
  18. J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotech. 7, 232–242 (2007). [CrossRef]
  19. I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004). [CrossRef] [PubMed]
  20. T. Babeva, I. Naydenova, S. Martin, and V. Toal, “Method for characterization of diffusion properties of photopolymerisable systems,” Opt. Express 16, 8487–8497 (2008). [CrossRef] [PubMed]
  21. S. Gallego, A. Marquez, D. Mendez, C. Neipp, M. Ortuno, A. Belendez, E. Fernandez, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92, 073306 (2008). [CrossRef]
  22. S. Gallego, A. Marquez, S. Marini, E. Fernandez, M. Ortuno, and I. Parcual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17, 18279–19291 (2009). [CrossRef] [PubMed]
  23. S. Blaya, L. Carretero, P. Acebal, R. F. Madrigal, A. Murciano, M. Ulibarrena, and A. Fimia, “Analysis of the diffusion processes in dry photopolymerizable holographic recording materials,” Proc. SPIE 5827, 128–139 (2005). [CrossRef]
  24. M. Antonietti, J. Coutandin, R. Grtutter, and H. Sillescu, “Diffusion of labeled macromolecules in molten polystyrenes studied by a holographic grating technique,” Macromolecules 17, 798–802 (1984). [CrossRef]
  25. J. Zhang, C. H. Wang, and D. Ehlich, “Investigation of the mass diffusion of camphorquinone in amorphous poly(methyl methacrylate) and poly(tert-butyl-methacrylate) hosts by the induced holographic grating relaxation technique,” Macromolecules 19, 1390–1394 (1986). [CrossRef]
  26. C. H. Wang and J. L. Xia, “Holographic grating studies of the diffusion process of camphorquinone in polycarbonate above and below tg,” Macromolecules 21, 3519–3523(1988). [CrossRef]
  27. D. Ehlich and H. Sillescu, “Tracer diffusion at the glass transition,” Macromolecules 23, 1600–1610 (1990). [CrossRef]
  28. J. Xia and C. H. Wang, “Holographic grating relaxation studies of probe diffusion in a polymer blend,” Macromolecules 32, 5655–5659 (1999). [CrossRef]
  29. A. V. Veniaminov and H. Sillescu, “Polymer and dye probe diffusion in poly(methyl methacrylate) below the glass transition studied by forced Rayleigh scattering,” Macromolecules 32, 1828–1837 (1999). [CrossRef]
  30. T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27, 197–203 (2010). [CrossRef]
  31. C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: part II: high frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B, doc. ID 136413 (posted 5 January 2011, in press).
  32. S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitisers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528–536(2009). [CrossRef]
  33. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Automated recording and testing of holographic optical element arrays,” Optik (Jena) 111, 459–467 (2000).
  34. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Phtopolymer holographic recording material,” Optik (Jena) 112, 449–463(2001). [CrossRef]
  35. P. V. Kamat and M. A. Fox, “Photophysics and photochemistry of xanthene dyes in polymer solutions and films,” J. Phys. Chem. 88, 2297–2302 (1984). [CrossRef]
  36. L. M. C. Sagis, “Generalised curvature expansion for the surface internal energy,” Phys. At. Nucl. 246, 591–608 (1997). [CrossRef]
  37. S. Abe and J. T. Sheridan, “Curvature correction model of droplet profiles,” Phys. Lett. A 253, 317–321 (1999). [CrossRef]
  38. W. S. Colburn and K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10, 1636–1641 (1971). [CrossRef] [PubMed]
  39. G. K. Oster, G. Oster, and G. Prati, “Dye-sensitized photopolymerisation of acrylamide,” J. Am. Chem. Soc. 79, 595–598(1957). [CrossRef]
  40. S. Mishra, R. Bajpai, R. Katare, and A. K. Bajpai, “Preparation and characterization of polyvinyl alcohol based biomaterials: water sorption and in vitro blood compatibility study,” J. Appl. Polym. Sci. 100, 2402–2408 (2006). [CrossRef]
  41. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006). [CrossRef]
  42. J. T. Sheridan, “Stacked volume holographic gratings. Part I. Transmission gratings in series,” Optik (Jena) 95, 73–80 (1993).
  43. M. R. Gleeson, J. V. Kelly, F. T. O’Neill, and J. T. Sheridan, “Recording beam modulation during grating formation,” Appl. Opt. 44, 5475–5482 (2005). [CrossRef] [PubMed]
  44. R. R. A. Syms, Practical Volume Holography (Clarendon, 1990).
  45. N. Kamiya, “Rigorous coupled wave analysis for practical planar dielectric gratings: 1. Thickness-changed holograms and some characteristics of diffraction efficiency,” Appl. Opt. 37, 5843–5853 (1998). [CrossRef]
  46. N. Kamiya, “Rigorous coupled wave analysis for practical planar dielectric gratings: 2. Diffraction by a surface-eroded hologram layer,” Appl. Opt. 37, 5854–5863 (1998). [CrossRef]
  47. N. Kamiya, “Rigorous coupled wave analysis for practical planar dielectric gratings: 3. Increase of higher-order lights owing to degenerated complex diffraction,” Appl. Opt. 37, 5864–5878(1998). [CrossRef]
  48. R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, 1980). [CrossRef]
  49. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).
  50. H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer material,” Semicond. Phys. Quantum Electron. Optoelectron. 2, 66–70(1999).
  51. J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford University, 1975).
  52. J. Crank and G. S. Park, Diffusion in Polymers, 1st ed.(Academic, 1968).
  53. M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “The effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006). [CrossRef]
  54. S. Wolfram, “Mathematica,” www.wolfram.com/mathematica.
  55. T. Babeva, D. Mackey, I. Naydenova, S. Martin, and V. Toal, “Study of the photoinduced surface relief modulation in photopolymers caused by illumination with a Gaussian beam of light,” J. Opt. 12, 124011 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited