OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 667–670

Temperature determination of cold atoms based on single-atom countings

Pengfei Zhang, Yanqiang Guo, Zhuoheng Li, Yu-chi Zhang, Yanfeng Zhang, Jinjin Du, Gang Li, Junmin Wang, and Tiancai Zhang  »View Author Affiliations

JOSA B, Vol. 28, Issue 4, pp. 667-670 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (358 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on the real sense of the time-of-flight , we demonstrate an alternative method of measuring the temperature of cold atoms in magneto-optical traps (MOTs) using a high-finesse optical microcavity, which acts as a pointlike single-atom counter. A cloud of atoms trapped in magneto-optical traps is positioned about 5 mm above the cavity, and the atoms fall freely down through the cavity. The temperature of the cold atoms in the MOT is determined by counting the exact arrival times of the single atoms. A theoretical model based on a ballistic expansion of a cloud of trapped atoms falling in the earth’s gravitational field is used to fit the probability distribution of atom arrivals, and the fittings agree very well with the experimental results. This method could be used for systems with little room, where an extra probe beam is hard to involve, or with fewer atoms initially.

© 2011 Optical Society of America

OCIS Codes
(120.6780) Instrumentation, measurement, and metrology : Temperature
(270.0270) Quantum optics : Quantum optics
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Atomic and Molecular Physics

Original Manuscript: December 20, 2010
Revised Manuscript: January 22, 2011
Manuscript Accepted: January 24, 2011
Published: March 10, 2011

Pengfei Zhang, Yanqiang Guo, Zhuoheng Li, Yu-chi Zhang, Yanfeng Zhang, Jinjin Du, Gang Li, Junmin Wang, and Tiancai Zhang, "Temperature determination of cold atoms based on single-atom countings," J. Opt. Soc. Am. B 28, 667-670 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer, 1999). [CrossRef]
  2. E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987). [CrossRef] [PubMed]
  3. P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, “Observation of atoms laser cooled below the Doppler limit,” Phys. Rev. Lett. 61, 169–172 (1988). [CrossRef] [PubMed]
  4. D. S. Weiss, E. Riis, Y. Shevy, P. J. Ungar, and S. Chu, “Optical molasses and multilevel atoms: experiment,” J. Opt. Soc. Am. B 6, 2072–2083 (1989). [CrossRef]
  5. T. M. Brzozowski, M. Maczynska, M. Zawada, J. Zachorowski, and W. Gawlik, “Time-of-flight measurement of the temperature of cold atoms for short trap-probe beam distances,” J. Opt. B 4, 62–66 (2002). [CrossRef]
  6. I. Yavin, M. Weel, A. Andreyuk, and A. Kumarakrishnan, “A calculation of the time-of-flight distribution of trapped atoms,” Am. J. Phys. 70, 149–152 (2002). [CrossRef]
  7. P. Kohns, P. Buch, W. Suptitz, C. Csambal, and W. Ertmer, “Online measurement of sub-Doppler temperatures in a Rb magneto-optical trap-by-trap centre oscillations,” Europhys. Lett. 22, 517–522 (1993). [CrossRef]
  8. C. I. Westbrook, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Phillips, and P. D. Lett, “Localization of atoms in a three-dimensional standing wave,” Phys. Rev. Lett. 65, 33–36 (1990). [CrossRef] [PubMed]
  9. J. Y. Courtois, G. Grynberg, B. Lounis, and P. Verkerk, “Recoil-induced resonances in cesium: an atomic analog to the free-electron laser,” Phys. Rev. Lett. 72, 3017–3020 (1994). [CrossRef] [PubMed]
  10. M. Mitsunaga, M. Yamashita, M. Koashi, and N. Imoto, “Temperature diagnostics for cold sodium atoms by transient four-wave mixing,” Opt. Lett. 23, 840–842 (1998). [CrossRef]
  11. A. Fuhrmanek, A. M. Lance, C. Tuchendler, P. Grangier, Y. R. P. Sortais, and A. Browaeys, “Imaging a single atom in a time-of-flight experiment,” New J. Phys. 12, 053028 (2010). [CrossRef]
  12. P. Berman, Cavity Quantum Electrodynamics (Academic, 1994).
  13. A. Ottl, S. Ritter, M. Kohl, and T. Esslinger, “Correlations and counting statistics of an atom laser,” Phys. Rev. Lett. 95, 090404 (2005). [CrossRef] [PubMed]
  14. R. Poldy, B. C. Buchler, and J. D. Close, “Single-atom detection with optical cavities,” Phys. Rev. A 78, 013640 (2008). [CrossRef]
  15. A. Haase, B. Hessmo, and J. Schmiedmayer, “Detecting magnetically guided atoms with an optical cavity,” Opt. Lett. 31, 268–270 (2006). [CrossRef] [PubMed]
  16. I. Teper, Y. Lin, and V. Vuletic, “Resonator-Aided single-atom detection on a microfabricated chip,” Phys. Rev. Lett. 97, 023002 (2006). [CrossRef] [PubMed]
  17. G. Li, Y. Zhang, Y. Li, X. Wang, J. Zhang, J. Wang, and T. Zhang, “Precision measurement of ultralow losses of an asymmetric optical microcavity,” Appl. Opt. 45, 7628–7631 (2006). [CrossRef] [PubMed]
  18. P. Zhang, G. Li, Y. Zhang, Y. Guo, J. Wang, and T. Zhang, “Light-induced atom desorption for cesium loading of a magneto-optical trap: Analysis and experimental investigations,” Phys. Rev. A 80, 053420 (2009). [CrossRef]
  19. H. Mabuchi, Q. A. Turchette, M. S. Chapman, and H. J. Kimble, “Real-time detection of individual atoms falling through a high-finesse optical cavity,” Opt. Lett. 21, 1393–1395 (1996). [CrossRef] [PubMed]
  20. H. J. Carmichael, An Open Systems Approach to Quantum Optics (Springer, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited