OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 679–688

Nonlocal optical second harmonic generation from centrosymmetric birefringent crystals: the case of muscovite mica

Annunziata Savoia, Marco Siano, Domenico Paparo, and Lorenzo Marrucci  »View Author Affiliations

JOSA B, Vol. 28, Issue 4, pp. 679-688 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1072 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a detailed study of the optical second harmonic (SH) generated in samples of centrosymmetric muscovite mica. Samples with thicknesses ranging from 30 to 300 μm have been investigated in a transmission normal-incidence geometry. We found a strong dependence of the polarization-dependent SH signal on the sample thickness. In particular, in some of the thickest samples, the SH signal is strongly enhanced. This signal amplification is not monotonically increased with thickness, but it varies erratically. These findings show that under the present experimental conditions, quadrupolar bulk second harmonic generation in mica becomes dominant on the SH generated from the surfaces. The large variability of the SH signal with the variation in thickness is then ascribed to partial optical phase-matching effects, controlled by the mica birefringence. In order to corroborate this hypothesis, a detailed theoretical model accounting for the nonlocal response and anisotropy of a generic birefringent crystal has been developed. The predictions of our model are found to be in excellent agreement with the experimental data.

© 2011 Optical Society of America

OCIS Codes
(000.2190) General : Experimental physics
(190.0190) Nonlinear optics : Nonlinear optics
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(310.0310) Thin films : Thin films
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Nonlinear Optics

Original Manuscript: September 2, 2010
Revised Manuscript: January 4, 2011
Manuscript Accepted: January 7, 2011
Published: March 10, 2011

Annunziata Savoia, Marco Siano, Domenico Paparo, and Lorenzo Marrucci, "Nonlocal optical second harmonic generation from centrosymmetric birefringent crystals: the case of muscovite mica," J. Opt. Soc. Am. B 28, 679-688 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Yang, A. Kuperman, N. Coombs, S. Mamiche-Afara, and G. A. Ozin, “Synthesis of oriented films of mesoporous silica on mica,” Nature 379, 703-705 (1996). [CrossRef]
  2. W. H. Briscoe, S. Timtuss, F. Tiberg, R. K. Thomas, D. J. McGillivray, and J. Klein, “Boundary lubrication under water,” Nature 444, 191-194 (2006). [CrossRef] [PubMed]
  3. M. Qin, L. K. Wang, and X. Z. Feng, “Bioactive surface modification of mica and poly(dimethylsiloxane) with hydrophobins for protein immobilization,” Langmuir 23, 4465-4471 (2007). [CrossRef] [PubMed]
  4. B. Zappone, M. Ruths, G. W. Greene, G. D. Jay, and J. N. Israelachvili, “Adsorption lubrication, and wear of lubricin on model surfaces: polymer brush-like behavior of a glycoprotein,” Biophys. J. 92, 1693-1708 (2007). [CrossRef]
  5. O. Agam, “Viscous fingering in volatile thin films,” Phys. Rev. E 79, 021603 (2009). [CrossRef]
  6. T. Fukuma, Y. Ueda, S. Yoshioka, and H. Asakawa, “Atomic-scale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy,” Phys. Rev. Lett. 104, 016101 (2010). [CrossRef] [PubMed]
  7. Y. R. Shen, “Surface-properties probed by second-harmonic and sum-frequency generation,” Nature 337, 519-525 (1989). [CrossRef]
  8. Y. R. Shen, “Surfaces probed by nonlinear optics,” Surf. Sci. 299, 551-562 (1994). [CrossRef]
  9. X. Zhuang, L. Marrucci, and Y. R. Shen, “Surface-monolayer-induced bulk alignment of liquid crystals,” Phys. Rev. Lett. 73, 1513-1516 (1994). [CrossRef] [PubMed]
  10. X. Zhuang, D. Wilk, L. Marrucci, and Y. R. Shen, “Orientation of amphiphilic molecules on polar substrates,” Phys. Rev. Lett. 75, 2144-2147 (1995). [CrossRef] [PubMed]
  11. L. Marrucci, D. Paparo, G. Cerrone, C. de Lisio, E. Santamato, S. Solimeno, S. Ardizzone, and P. G. Quagliotto, “Probing interfacial properties by optical second-harmonic generation,” Opt. Lasers Eng. 37, 601-610 (2002). [CrossRef]
  12. A. Savoia, D. Paparo, P. Perna, Z. Ristic, M. Salluzzo, F. Miletto Granozio, U. Scotti di Uccio, C. Richter, S. Thiel, J. Mannhart, and L. Marrucci, “Polar catastrophe and electronic reconstructions at the LaAlO3/SrTiO3 interface: evidence from optical second harmonic generation,” Phys. Rev. B 80, 075110 (2009). [CrossRef]
  13. P. Guyot-Sionnest, W. Chen, and Y. R. Shen, “General considerations on optical second-harmonic generation from surfaces and interfaces,” Phys. Rev. B 33, 8254-8263 (1986). [CrossRef]
  14. J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centrosymmetric crystals,” Phys. Rev. B 35, 1129-1141(1987). [CrossRef]
  15. X. Wei, S.-C. Hong, A. I. Lvovsky, H. Held, and Y. R. Shen, “Evaluation of surface vs bulk contributions in sum-frequency vibrational spectroscopy using reflection and transmission geometries,” J. Phys. Chem. B 104, 3349-3354 (2000). [CrossRef]
  16. B. Jérôme and Y. R. Shen, “Anchoring of nematic liquid-crystals on mica in the presence of volatile molecules,” Phys. Rev. E 48, 4556-4574 (1993). [CrossRef]
  17. G. Berkovic, “New studies of liquid and solid surfaces using second harmonic generation,” Phys. A 168, 140-148 (1990). [CrossRef]
  18. R. Yerushalmi-Rozen, J. Klein, and G. Berkovic, “In situ probing of polymer grafting from solution onto solid substrates by nonlinear optics,” Langmuir 8, 1392-1397 (1992). [CrossRef]
  19. M. Omote, H. Kitaoka, E. Kobayashi, O. Suzuki, K. Aratake, H. Sano, G. Mizutani, W. Wolf, and R. Podloucky, “Spectral, tensor, and ab initio theoretical analysis of optical second harmonic generation from the rutile TiO2 (110) and (001) faces,” J. Phys. Condens. Matter 17, S175-S200 (2005). [CrossRef]
  20. A. Yariv, Quantum Electronics (Wiley, 1989).
  21. M. Medhat and S. Y. El-Zaiat, “Interferometric determination of the birefringence dispersion of anisotropic materials,” Opt. Commun. 141, 145-149 (1997). [CrossRef]
  22. B. Gauthier-Manuel, “Simultaneous determination of the thickness and optical constants of weakly absorbing thin films,” Meas. Sci. Technol. 9, 485-487 (1998). [CrossRef]
  23. A. I. Bailey and S. M. Kay, “Measurement of refractive index and dispersion of mica, employing multiple beam interference techniques,” Br. J. Appl. Phys. 16, 39-46 (1965). [CrossRef]
  24. In crystallography, the glide plane indicates a symmetry operation describing how a reflection in a plane, followed by a translation parallel to that plane, may leave the crystal unchanged . Note that the tensors characterizing the optical response are not dependent on the translations.
  25. P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21-22 (1962). [CrossRef]
  26. W. Borchardt-Ott, Crystallography (Springer-Verlag, 1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited