OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 697–702

Magnetic photonic crystals for terahertz tunable filter and multifunctional polarization controller

Fei Fan, Zhan Guo, Jin-Jun Bai, Xiang-Hui Wang, and Sheng-Jiang Chang  »View Author Affiliations

JOSA B, Vol. 28, Issue 4, pp. 697-702 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1188 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We numerically investigate the photonic bandgaps as well as the transmission properties of a two-dimensional magnetic photonic crystal (PC) in the terahertz (THz) region by the plane wave expansion and finite-difference time-domain methods. The calculation predicts a magnetic PC waveguide that can work as a tunable filter with a bandwidth larger than 0.1 THz , and its central frequency is from 0.83 to 1.03 THz . It also shows that a magnetic PC can be used as a polarization controller with three functions, including controllable polarizing, polarization beam splitting, and π π phase shifting.

© 2011 Optical Society of America

OCIS Codes
(260.3090) Physical optics : Infrared, far
(160.5298) Materials : Photonic crystals
(130.7408) Integrated optics : Wavelength filtering devices
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:

Original Manuscript: December 6, 2010
Revised Manuscript: January 31, 2011
Manuscript Accepted: January 31, 2011
Published: March 10, 2011

Fei Fan, Zhan Guo, Jin-Jun Bai, Xiang-Hui Wang, and Sheng-Jiang Chang, "Magnetic photonic crystals for terahertz tunable filter and multifunctional polarization controller," J. Opt. Soc. Am. B 28, 697-702 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. G. Wright, M. Zgol, D. Adebimpe, E. Keenan, R. Mulligan, and L. V. Kirkland, “Multiresolution nanoscale sensor-based circuit board testing,” in IEEE Autotestcon (IEEE, 2005), pp. 766–772.
  2. W. L. Chan, M. L. Moravec, R. G. Baraniuk, and D. M. Mittleman, “Terahertz imaging with compressed sensing and phase retrieval,” Opt. Lett. 33, 974–976 (2008). [CrossRef] [PubMed]
  3. H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22, 1075–1080 (2007). [CrossRef]
  4. I. Ibraheem, N. Krumbholz, D. Mittleman, and M. Koch, “Low-dispersive dielectric mirrors for future wireless terahertz communication systems,” IEEE Microw. Wireless Compon. Lett. 18, 67–69 (2008). [CrossRef]
  5. Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun. 281, 4623–4625 (2008). [CrossRef]
  6. H. Zhang, P. Guo, P. Chen, S. J. Chang, and J. H. Yuan, “Liquid-crystal-filled photonic crystal for terahertz switch and filter,” J. Opt. Soc. Am. B 26, 101–106 (2009). [CrossRef]
  7. B. Wu, H. Zhang, P. Guo, Q. Wang, and S. J. Chang, “Multifunctional photonic crystal cross waveguide for terahertz waves,” J. Opt. Soc. Am. B 27, 505–511 (2010). [CrossRef]
  8. I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer pitch Al gratings,” Opt. Lett. 34, 274–276 (2009). [CrossRef] [PubMed]
  9. L. L. Zhang, H. Zhong, C. Deng, C. L. Zhang, and Y. J. Zhao, “Terahertz wave polarization analyzer using birefringent materials,” Opt. Express 17, 20266–20271 (2009). [CrossRef] [PubMed]
  10. J. B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31, 265–267 (2006). [CrossRef] [PubMed]
  11. C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31, 1112–1114 (2006). [CrossRef] [PubMed]
  12. C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, “Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,” Opt. Express 12, 2630–2635 (2004). [CrossRef]
  13. Y. G. Zhao and D. Grischkowsky, “Terahertz demonstrations of effectively two-dimensional photonic bandgap structures,” Opt. Lett. 31, 1534–1536 (2006). [CrossRef] [PubMed]
  14. T. D. Drysdale, I. S. Gregory, W. R. Tribe, and D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004). [CrossRef]
  15. L. J. He and Z. Hong, “Terahertz wave switch based on silicon photonic crystals,” Appl. Opt. 46, 5034–5037 (2007). [CrossRef] [PubMed]
  16. H. Nemec, L. Duvillaret, F. Garet, P. Kuzel, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96, 4072–4075 (2004). [CrossRef]
  17. R. Wilk, N. Vieweg, O. Kopschinski, T. Hasek, and M. Koch, “THz spectroscopy of liquid crystals from the CB family,” J. Infrared Milli. Terahz. Waves 30, 1139–1147 (2009). [CrossRef]
  18. S. Sodha and N. C. Srivastava, Microwave Propagation in Ferrimagnetics (Plenum, 1981), Chap. 2.
  19. M. Sigalas, C. M. Soukoulis, R. Biswas, and K. M. Ho, “Effect of the magnetic permeability on photonic band gaps,” Phys. Rev. B 56, 959–962 (1997). [CrossRef]
  20. C. S. Kee, J. E. Kim, H. Y. Park, I. Park, and H. Lim, “Two-dimensional tunable magnetic photonic crystals,” Phys. Rev. B 61, 15523–11525 (2000). [CrossRef]
  21. A. SoltaniVala, B. Rezaei, and M. Kalafi, “Tunable defect modes in 2D photonic crystals by means of external magnetic fields,” Phys. B 405, 2996–2998 (2010). [CrossRef]
  22. J. X. Fu, R. J. Liu, and Z. Y. Li, “Experimental demonstration of tunable gyromagnetic photonic crystals controlled by dc magnetic fields,” Europhys. Lett. 89, 64003 (2010). [CrossRef]
  23. Q. Y. Wen, H. W. Zhang, H. Q. Yang, S. Li, D. G. Xu, and J. Q. Yao, “Fe-doped polycrystalline CeO2 as terahertz optical material,” Chin. Phys. Lett. 26, 047803 (2009). [CrossRef]
  24. G. A. Komandin, V. I. Torgashev, A. A. Volkov, O. E. Porodinkov, I. E. Spektor, and A. A. Bush, “Optical properties of BiFeO3 ceramics in the frequency range 0.3–30.0 THz,” Phys. Sol. State 52, 734–743 (2010). [CrossRef]
  25. Q. H. Yang, H. W. Zhang, L. Y. Li, Q. Y. Wen, and J. Zha, “An artificially garnet crystal materials using in terahertz waveguide,” Chin. Phys. Lett. 25, 3957–3960 (2008). [CrossRef]
  26. C. Langner, C. L. S. Kantner, Y. H. Chu, L. M. Martin, P. Yu, J. Seidel, R. Ramesh, and J. Orenstein, “Observation of ferromagnetic resonance in SrRuO3 by the time resolved magneto-optical Kerr effect,” Phys. Rev. Lett. 102, 177601 (2009). [CrossRef] [PubMed]
  27. M. Nakajima, A. Namai, S. Ohkoshi, and T. Suemoto, “Ultrafast time domain demonstration of bulk magnetization precession at zero magnetic field ferromagnetic resonance induced by terahertz magnetic field,” Opt. Express 18, 18260–18268 (2010). [CrossRef] [PubMed]
  28. D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, 1998), Chap. 9.
  29. Q. H. Yang, H. W. Zhang, L. Y. Li, Q. Y. Wen, Y. L. Liu, I. M. Syvorotka, and I. I. Syvorotka, “Magneto-optical and microwave properties of LuBiIG thin films prepared by liquid phase epitaxy method from lead-free flux,” Chin. Phys. Lett. 24, 047401(2009). [CrossRef]
  30. J. van Slageren, S. Vongtragool, A. Mukhin, B. Gorshunov, and M. Dressel, “Terahertz Faraday effect in single molecule magnets,” Phys. Rev. B 72, 020401 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited