OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 714–720

Configuring Au and Ag nanorods for sensing applications

Ovidio Peña-Rodríguez, Umapada Pal, Vladimir Rodríguez-Iglesias, Luis Rodríguez-Fernández, and Alicia Oliver  »View Author Affiliations


JOSA B, Vol. 28, Issue 4, pp. 714-720 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000714


View Full Text Article

Enhanced HTML    Acrobat PDF (884 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have studied optimum configurations of Au and Ag nanorods for optical sensing applications. From the anal ysis of the resonance condition by means of the quasistatic approximation, it was found that sensitivity is controlled by two main factors: the aspect ratio of the nanorods and their composition (the metal’s bulk plasma wavelength), and it depends linearly on both. The finding was confirmed quantitatively using T-matrix calculations, even for particles with a radius of 40 nm , where the quasistatic approximation is no longer valid. For ease of detection, the intensity of the surface plasmon resonance band of the nanostructures was included along with its full-width at half-maximum in the correction factor C, which on multiplying with the sensitivity ( Δ λ SPR / Δ n m ) gives a figure of merit. It has been demonstrated that the metal nanorods, especially the larger ones, have better optical sensitivity than the nanostructures of nanobox- or nanoshell-like geometries, which have been reported to be the best optical sensors for these metals.

© 2011 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(160.4760) Materials : Optical properties
(240.6680) Optics at surfaces : Surface plasmons
(160.4236) Materials : Nanomaterials
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Materials

History
Original Manuscript: November 22, 2010
Revised Manuscript: January 11, 2011
Manuscript Accepted: January 12, 2011
Published: March 14, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Ovidio Peña-Rodríguez, Umapada Pal, Vladimir Rodríguez-Iglesias, Luis Rodríguez-Fernández, and Alicia Oliver, "Configuring Au and Ag nanorods for sensing applications," J. Opt. Soc. Am. B 28, 714-720 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-4-714


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol. 22, 47–52 (2004). [CrossRef] [PubMed]
  2. Y. Sun and Y. Xia, “Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes,” Anal. Chem. 74, 5297–5305 (2002). [CrossRef] [PubMed]
  3. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003). [CrossRef] [PubMed]
  4. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  6. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003). [CrossRef] [PubMed]
  7. A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003). [CrossRef]
  8. G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003). [CrossRef]
  9. K. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220–19225(2006). [CrossRef] [PubMed]
  10. M. Cao, M. Wang, and N. Gu, “Optimized surface plasmon resonance sensitivity of gold nanoboxes for sensing applications,” J. Phys. Chem. C 113, 1217–1221 (2009). [CrossRef]
  11. G. Raschke, S. Brogl, A. S. Susha, A. L. Rogach, T. A. Klar, J. Feldmann, B. Fieres, N. Petkov, T. Bein, A. Nichtl, and K. Kurzinger, “Gold nanoshells improve single nanoparticle molecular sensors,” Nano Lett. 4, 1853–1857 (2004). [CrossRef]
  12. L. J. Sherry, S. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5, 2034–2038 (2005). [CrossRef] [PubMed]
  13. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002). [CrossRef] [PubMed]
  14. E. S. Kooij and B. Poelsema, “Shape and size effects in the optical properties of metallic nanorods,” Phys. Chem. Chem. Phys. 8, 3349–3357 (2006). [CrossRef]
  15. J. Fu, B. Park, and Y. Zhao, “Nanorod-mediated surface plasmon resonance sensor based on effective medium theory,” Appl. Opt. 48, 4637–4649 (2009). [CrossRef] [PubMed]
  16. S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999). [CrossRef]
  17. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles, 1st ed. (Cambridge University, 2002).
  18. M. I. Mishchenko and L. D. Travis, “Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transf. 60, 309–324 (1998). [CrossRef]
  19. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  20. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178–18188(1993). [CrossRef]
  21. P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971). [CrossRef]
  22. M. I. Mishchenko and L. D. Travis, “T-matrix computations of light scattering by large spheroidal particles,” Opt. Commun. 109, 16–21 (1994). [CrossRef]
  23. M. I. Mishchenko, L. D. Travis, and A. Macke, “Scattering of light by polydisperse, randomly oriented, finite circular cylinders,” Appl. Opt. 35, 4927–4940 (1996). [CrossRef] [PubMed]
  24. D. J. Wielaard, M. I. Mishchenko, A. Macke, and B. E. Carlson, “Improved T-matrix computations for large, nonabsorbing and weakly absorbing nonspherical particles and comparison with geometrical-optics approximation,” Appl. Opt. 36, 4305–4313(1997). [CrossRef] [PubMed]
  25. M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882(1991). [CrossRef]
  26. S. Fedrigo, W. Harbich, and J. Buttet, “Collective dipole oscillations in small silver clusters embedded in rare-gas matrices,” Phys. Rev. B 47, 10706–10715 (1993). [CrossRef]
  27. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1998). [CrossRef]
  28. W. C. Huang and J. T. Lue, “Quantum size effect on the optical properties of small metallic particles,” Phys. Rev. B 49, 17279–17285 (1994). [CrossRef]
  29. M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109, 21556–21565 (2005). [CrossRef]
  30. P. K. Jain and M. A. El-Sayed, “Surface plasmon resonance sensitivity of metal nanostructures: physical basis and universal scaling in metal nanoshells,” J. Phys. Chem. C 111, 17451–17454 (2007). [CrossRef]
  31. O. Peña, U. Pal, L. Rodríguez-Fernández, and A. Crespo-Sosa, “Linear optical response of metallic nanoshells in different dielectric media,” J. Opt. Soc. Am. B 25, 1371–1379 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited