OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 721–726

Spectrally encoded photonic crystal nanocavities by independent lithographic mode tuning

Bowen Wang, Mehmet A. Dündar, Richard Nötzel, Fouad Karouta, Sailing He, and Rob W. van der Heijden  »View Author Affiliations


JOSA B, Vol. 28, Issue 4, pp. 721-726 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000721


View Full Text Article

Enhanced HTML    Acrobat PDF (983 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the independent lithographic mode tuning by changing the holes around the defect area of photonic crystal nanocavities containing light-emitting quantum dots. The data have been verified by the three- dimensional finite-difference time domain simulation. These findings can be applied to realize encoded particles with large coding capability ( > 10 5 ) for biosensing.

© 2011 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: December 8, 2010
Manuscript Accepted: January 5, 2011
Published: March 14, 2011

Citation
Bowen Wang, Mehmet A. Dündar, Richard Nötzel, Fouad Karouta, Sailing He, and Rob W. van der Heijden, "Spectrally encoded photonic crystal nanocavities by independent lithographic mode tuning," J. Opt. Soc. Am. B 28, 721-726 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-4-721


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophoton. 2, 212–226 (2009). [CrossRef]
  2. S. Birtwell and H. Morgan, “Microparticle encoding technologies for high-throughput multiplexed suspension assays,” Integr. Biol. 1, 345–362 (2009). [CrossRef]
  3. B. J. Battersby, D. Bryant, W. Meutermans, D. Matthews, M. L. Smythe, and M. Trau, “Toward larger chemical libraries: encoding with fluorescent colloids in combinatorial chemistry,” J. Am. Chem. Soc. 122, 2138–2139 (2000). [CrossRef]
  4. M. Han, X. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol. 19, 631–635 (2001). [CrossRef] [PubMed]
  5. R. V. Nair and R. Vijaya, “Photonic crystal sensors: an overview,” Prog. Quantum Electron. 34, 89–134 (2010). [CrossRef]
  6. S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express 16, 8174–8180 (2008). [CrossRef] [PubMed]
  7. S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9, 2924–2932 (2009). [CrossRef] [PubMed]
  8. S. O. Meada, M. S. Yoon, K. H. Ahn, and M. J. Sailor, “Porous silicon photonic crystals as encoded microcarriers,” Adv. Mater. 16, 1811–1814 (2004). [CrossRef]
  9. F. Cunin, T. A. Schmedake, J. R. Link, Y. Yang Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41(2002). [CrossRef]
  10. S. O. Meade, M. Y. Chen, M. J. Sailor, and G. M. Miskelly, “Multiplexed DNA detection using spectrally encoded porous SiO2 photonic crystal particles,” Anal. Chem. 81, 2618–2625 (2009). [CrossRef] [PubMed]
  11. Y. Zhao, X. Zhao, J. Hu, M. Xu, W. Zhao, L. Sun, C. Zhu, H. Xu, and Z. Gu, “Encoded porous beads for label-free multiplex detection of tumor markers,” Adv. Mater. 21, 569–572 (2009). [CrossRef] [PubMed]
  12. M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650(2003). [CrossRef]
  13. D. F. Dorfner, T. Hürlimann, G. Abstreiter, and J. J. Finley, “Optical characterization of silicon on insulator photonic crystal nanocavities infiltrated with colloidal PbS quantum dots,” Appl. Phys. Lett. 91, 233111 (2007). [CrossRef]
  14. L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett. 96, 113702 (2010). [CrossRef]
  15. Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express 12, 3988–3995 (2004). [CrossRef] [PubMed]
  16. F. Pisanello, A. Qualtieri, T. Stomeo, L. Martiradonna, R. Cingolani, A. Bramati, and M. De Vittorio, “High-Purcell-factor dipolelike modes at visible wavelengths in H1 photonic crystal cavity,” Opt. Lett. 35, 1509–1511 (2010). [CrossRef] [PubMed]
  17. R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 µmwavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549(2006). [CrossRef]
  18. K. Nozaki and T. Baba, “Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers,” Appl. Phys. Lett. 88, 211101 (2006). [CrossRef]
  19. M. A. Dündar, E. C. I. Ryckebosch, R. Nötzel, F. Karouta, L. J. van IJzendoorn, and R. W. van der Heijden, “Sensitivities of InGaAsP photonic crystal membrane nanocavities to hole refractive index,” Opt. Express 18, 4049–4056 (2010). [CrossRef] [PubMed]
  20. M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q design of semiconductor-based ultrasmall photonic crystal nanocavity,” Opt. Express 18, 8144–8150 (2010). [CrossRef] [PubMed]
  21. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited