OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 727–736

Relativistically invariant photonic wave packets

Kamil Brádler  »View Author Affiliations

JOSA B, Vol. 28, Issue 4, pp. 727-736 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (452 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a photonic wave packet construction that is immune to the decoherence effects induced by the action of the Lorentz group. The amplitudes of a pure quantum state representing the wave packet remain invariant, irrespective of the reference frame into which the wave packet has been transformed. Transmitted information is encoded in the helicity degrees of freedom of two correlated momentum modes. The helicity encoding is considered to be particularly suitable for free-space communication. The integral part of the story is information retrieval on the receiver’s side. We employed probably the simplest possible helicity (polarization) projection measurement originally studied by Peres and Terno. Remarkably, the same conditions ensuring the invariance of the wave packet also guarantee perfect distinguishability in the process of measuring the helicity.

© 2011 Optical Society of America

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(350.5030) Other areas of optics : Phase
(350.5720) Other areas of optics : Relativity
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: November 4, 2010
Revised Manuscript: December 3, 2010
Manuscript Accepted: December 13, 2010
Published: March 14, 2011

Kamil Brádler, "Relativistically invariant photonic wave packets," J. Opt. Soc. Am. B 28, 727-736 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Peres and D. R. Terno, “Relativistic Doppler effect in quantum communication,” J. Mod. Opt. 50, 1165–1173 (2003). [CrossRef]
  2. Arvind and N. Mukunda, “Relativistic operator description of photon polarization,” Pramana 47, 347–359 (1996). [CrossRef]
  3. A. Aiello and J. P. Woerdman, “Intrinsic entanglement degradation by multimode detection,” Phys. Rev. A 70, 023808 (2004). [CrossRef]
  4. N. T. Lindner and D. Terno, “The effect of focusing on polarization qubits,” J. Mod. Opt. 52, 1177–1188 (2005). [CrossRef]
  5. T. Setlälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002). [CrossRef]
  6. P. Caban and J. Rembieliński, “Photon polarization and Wigner’s little group,” Phys. Rev. A 68, 042107 (2003). [CrossRef]
  7. P. M. Alsing and G. J. Stephenson, “The Wigner rotation for photons in an arbitrary gravitational field,” arXiv:quant-ph/0902.1399.
  8. M. Czachor and M. Wilczewski, “Relativistic Bennett–Brassard cryptographic scheme, relativistic errors, and how to correct them,” Phys. Rev. A 68, 010302 (2003). [CrossRef]
  9. P. Caban, “Einstein–Podolsky–Rosen correlations of photons: quantum-field-theory approach,” Phys. Rev. A 76, 052102 (2007). [CrossRef]
  10. E. P. Wigner, “On unitary representations of the inhomogeneous Lorentz group,” Annals of Math 40, 149–204 (1939). [CrossRef]
  11. S. Weinberg, The Quantum Theory of Fields (Cambridge University, 1995).
  12. W.-K. Tung, Group Theory in Physics (World Scientific, 1985).
  13. F. R. Halpern, Special Relativity and Quantum Mechanics(Prentice-Hall, 1968).
  14. R. U. Sexl and H. K. Urbantke, Relativity, Groups, Particles (Springer, 2001). [CrossRef]
  15. R. M. Gingrich, A. J. Bergou, and C. Adami, “Entangled light in moving frames,” Phys. Rev. A 68, 042102 (2003). [CrossRef]
  16. S. D. Bartlett and D. R. Terno, “Relativistically invariant quantum information,” Phys. Rev. A 71, 012302 (2005). [CrossRef]
  17. A. Shaji and E. C. G. Sudarshan, “Who’s afraid of not completely positive maps?,” Phys. Lett. A 341, 48–54 (2005). [CrossRef]
  18. S. D. Bartlett, T. Rudolph, and R. W. Spekkens, “Reference frames, superselection rules, and quantum information,” Rev. Mod. Phys. 79, 555–609 (2007). [CrossRef]
  19. S. D. Bartlett, T. Rudolph, and R. W. Spekkens, “Classical and quantum communication without a shared reference frame,” Phys. Rev. Lett. 91, 027901 (2003). [CrossRef] [PubMed]
  20. G. W. Mackey, “Infinite-dimensional group representations,” Bull. Am. Math. Soc. 69, 628–686 (1963). [CrossRef]
  21. L. C. Biedenharn and J. D. Louck, “Angular momentum in quantum physics,” in Encyclopedia of Mathematics and Its Applications (Addison-Wesley, 1981), Vol. 8.
  22. A. Aiello and J. P. Woerdman, “Notes on polarization measurements,” arXiv:quant-ph/0503124v1 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited