OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 746–755

Modeling waveguides in photonic woodpiles using the fictitious source superposition method

Dougal J. Kan, Ara A. Asatryan, Christopher G. Poulton, Kokou B. Dossou, and Lindsay C. Botten  »View Author Affiliations


JOSA B, Vol. 28, Issue 4, pp. 746-755 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000746


View Full Text Article

Enhanced HTML    Acrobat PDF (898 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We extend the fictitious source superposition method in order to model linear defects in photonic woodpiles, and we use the method to model a waveguide that is created by changing either the radius or refractive index of a single rod of an infinite woodpile composed of chalcogenide glass cylinders. In one instance, a nearly constant dispersion was observed over a sizable k x interval, where k x is the Bloch vector in the waveguiding direction, making this a compelling geometry for slow-light waveguides. The principal advantage of the method is that it does not rely on a supercell, thus avoiding what is possibly the greatest source of inefficiency present in most of the other methods that are used for modeling these structures. Instead, the method proceeds by placing an artificial source inside each rod of the defect layer and then subsequently taking an appropriate field superposition to remove all but one of these sources. The remaining source can then be used to mimic the fields that would be produced by a defect rod.

© 2011 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1960) Diffraction and gratings : Diffraction theory
(260.0260) Physical optics : Physical optics
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Diffraction and Gratings

History
Original Manuscript: October 25, 2010
Revised Manuscript: January 25, 2011
Manuscript Accepted: January 26, 2011
Published: March 17, 2011

Citation
Dougal J. Kan, Ara A. Asatryan, Christopher G. Poulton, Kokou B. Dossou, and Lindsay C. Botten, "Modeling waveguides in photonic woodpiles using the fictitious source superposition method," J. Opt. Soc. Am. B 28, 746-755 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-4-746


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).
  2. H. S. Sözüer and J. P. Dowling, “Photonic band calculations for woodpile structures,” J. Mod. Opt. 41, 231–239 (1994). [CrossRef]
  3. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413–416 (1994). [CrossRef]
  4. N. Yamamoto, S. Noda, and A. Chutinan, “Development of one period of a three-dimensional photonic crystal in the 510 μmwavelength region by wafer fusion and laser beam diffraction pattern observation techniques,” Jpn. J. Appl. Phys. 37, L1052–L1054 (1998). [CrossRef]
  5. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417, 52–55 (2002). [CrossRef] [PubMed]
  6. E. Nicoletti, G. Zhou, B. Jia, M. J. Ventura, D. Bulla, B. Luther-Davies, and M. Gu, “Observation of multiple higher-order stopgaps from three-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 33, 2311–2313 (2008). [CrossRef] [PubMed]
  7. T. F. Krauss, “Why do we need slow light?” Nat. Photon. 2, 448–450 (2008). [CrossRef]
  8. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005). [CrossRef] [PubMed]
  9. S. Johnson, M. Povinelli, M. Soljačić, A. Kralis, S. Jacobs, and J. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81, 283–293(2005). [CrossRef]
  10. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305, 227–229 (2004). [CrossRef] [PubMed]
  11. M. Imada, L. H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett. 88, 171107 (2006). [CrossRef]
  12. S. Kawashima, K. Ishizaki, and S. Noda, “Light propagation in three-dimensional photonic crystals,” Opt. Express 18, 386–392(2010). [CrossRef] [PubMed]
  13. D. J. Kan, A. A. Asatryan, C. G. Poulton, and L. C. Botten, “Multipole method for modeling linear defects in photonic woodpiles,” J. Opt. Soc. Am. B 27, 246–258 (2010). [CrossRef]
  14. J. Chen, R. Hong, and J. Yang, “Analysis of planar defect structures in three-dimensional layer-by-layer photonic crystals,” J. Appl. Phys. 104, 063111 (2008). [CrossRef]
  15. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a plane wave basis,” Opt. Express 8, 173–190 (2001). [CrossRef] [PubMed]
  16. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  17. A. Chutinan and S. Noda, “Highly confined waveguides and waveguide bends in three-dimensional photonic crystals,” Appl. Phys. Lett. 75, 3739–3741 (1999). [CrossRef]
  18. M. Okano, S. Kako, and S. Noda, “Coupling between a point-defect cavity and a line-defect waveguide in three-dimensional photonic crystal,” Phys. Rev. B 68, 235110 (2003). [CrossRef]
  19. S. Kawashima, L. H. Lee, M. Okano, M. Imada, and S. Noda, “Design of donor-type line-defect waveguides in three-dimensional photonic crystals,” Opt. Express 13, 9774–9781 (2005). [CrossRef] [PubMed]
  20. S. Kawashima, M. Okano, M. Imada, and S. Noda, “Design of compound-defect waveguides in three-dimensional photonic crystals,” Opt. Express 14, 6303–6307 (2006). [CrossRef] [PubMed]
  21. S. Wilcox, L. C. Botten, R. C. McPhedran, C. G. Poulton, and C. M. de Sterke, “Modeling of defect modes in photonic crystals using the fictitious source superposition method,” Phys. Rev. E 71, 056606 (2005). [CrossRef]
  22. L. C. Botten, K. B. Dossou, S. Wilcox, R. C. McPhedran, C. M. de Sterke, N. A. Nicorovici, and A. A. Asatryan, “Highly accurate modelling of generalized defect modes in photonic crystals using the fictitious source superposition method,” Int. J. Microw. Opt. Technol. 1, 133–145 (2006).
  23. F. Zolla, R. Petit, and M. Cadilhac, “Electromagnetic theory of diffraction by a system of parallel rods: the method of fictitious sources,” J. Opt. Soc. Am. A 11, 1087–1096 (1994). [CrossRef]
  24. G. H. Smith, L. C. Botten, R. C. McPhedran, and N. A. Nicorovici, “Cylinder gratings in conical incidence with applications to woodpile structures,” Phys. Rev. E 67, 056620 (2003). [CrossRef]
  25. A. Figotin and V. Goren, “Resolvent method for computations of localized defect modes of H-polarization in two-dimensional photonic crystals,” Phys. Rev. E 64, 056623 (2001). [CrossRef]
  26. L. C. Botten, N. A. Nicorovici, A. A. Asatryan, R. C. McPhedran, C. M. de Sterke, and P. A. Robinson, “Formulation for electromagnetic scattering and propagation through grating stacks of metallic and dielectric cylinders for photonic crystal calculations. part II. properties and implementation,” J. Opt. Soc. Am. A 17, 2177–2109 (2000). [CrossRef]
  27. S. Ha, A. A. Sukhorukov, K. B. Dossou, L. C. Botten, A. V. Lavrinenko, D. N. Chigrin, and Y. S. Kivshar, “Dispersionless tunneling of slow light in antisymmetric photonic crystal couplers,” Opt. Express 16, 1104–1114 (2008). [CrossRef] [PubMed]
  28. S. J. Madden, D. Choi, M. R. Lamont, V. G. Taeed, N. J. Baker, M. D. Pelusi, B. Luther-Davies, and B. J. Eggleton, “Chalcogenide glass photonic chips,” Opt. Photon. News 19, 19–23 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (471 KB)     
» Media 2: AVI (441 KB)     
» Media 3: AVI (446 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited