OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 756–759

Finite photonic crystal waveguide with an embedded cavity: optical conductance “dips” and vortices

Silvia Albaladejo, Marcelo Lester, and Juan José Sáenz  »View Author Affiliations

JOSA B, Vol. 28, Issue 4, pp. 756-759 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (577 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Light transmission through a finite photonic crystal waveguide with an embedded cavity is analyzed in terms of the optical conductance (OC). Under appropriate conditions, the transmission is inhibited for any angle of incidence. The resonance condition manifests itself as a “dip” in the OC. Just at the resonance, the power flow presents strong vortices inside the cavity.

© 2011 Optical Society of America

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(290.4210) Scattering : Multiple scattering
(050.4865) Diffraction and gratings : Optical vortices
(160.5298) Materials : Photonic crystals

ToC Category:

Original Manuscript: October 27, 2010
Revised Manuscript: December 31, 2010
Manuscript Accepted: January 25, 2011
Published: March 17, 2011

Silvia Albaladejo, Marcelo Lester, and Juan José Sáenz, "Finite photonic crystal waveguide with an embedded cavity: optical conductance “dips” and vortices," J. Opt. Soc. Am. B 28, 756-759 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. G. Johnson, A. Mekis, S. Fan, and J. D. Joannopoulos, “Molding the flow of light,” Comput. Sci. Eng. 3, 38–47 (2001). [CrossRef]
  2. X. Zhang, “Subwavelength far-field resolution in a square two-dimensional photonic crystal,” Phys. Rev. E 71, 037601(2005). [CrossRef]
  3. Y. Ruana, M.-K. Kim, Y.-H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” Appl. Phys. Lett. 90, 071102 (2007). [CrossRef]
  4. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005). [CrossRef]
  5. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).
  6. C.M.Soukoulis, ed., Photonic Crystals and Light Localization in the 21st Century, NATO ASI Series C: Mathematical and Physics Sciences (Kluwer Academic, 2001), Vol. 563.
  7. S. Fan, J. N. Winn, A. Devenyi, J. C. Chen, R. D. Meade, and J. D. Joannopoulos, “Guided and defect modes in periodic dielectric waveguides,” J. Opt. Soc. Am. B 12, 1267–1272 (1995). [CrossRef]
  8. R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhard, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 754753–4755 (1994). [CrossRef]
  9. A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000). [CrossRef]
  10. H. Kurt, H. Benisty, T. Melo, O. Khayam, and C. Cambournac, “Slow-light regime and critical coupling in highly multimode corrugated waveguides,” J. Opt. Soc. Am. B 25, C1–C14(2008). [CrossRef]
  11. S. Albaladejo, M. Lester, L. S. Froufe-Pérez, A. García-Martín, and J. J. Sáenz, “Optical conductance of waveguides built into finite photonic crystals,” Appl. Phys. Lett. 91, 061107 (2007). [CrossRef]
  12. W. Dai, B. Wang, T. Koschny, and C. M. Soukoulis, “Experimental verification of quantized conductance for microwave frequencies in photonic crystal waveguides,” Phys. Rev. B 78, 073109 (2008). [CrossRef]
  13. H. I. Pérez, C. I. Valencia, E. R. Méndez, and J. A. Sánchez-Gil, “On the transmission of diffuse light through thick slits,” J. Opt. Soc. Am. A 26, 909–918 (2009). [CrossRef]
  14. H. Benisty,“Graphene nanoribbons: photonic crystal waveguide analogy and minigap stripes,” Phys. Rev. B 79, 155409 (2009). [CrossRef]
  15. V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B 50, 16835–16844 (1994). [CrossRef]
  16. V. Kuzmiak and A. A. Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation,” Phys. Rev. B 55, 7427–7444 (1997). [CrossRef]
  17. M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52, 11744–11751 (1995). [CrossRef]
  18. D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for two-dimensional metallic photonic band-gap cavity,” Appl. Phys. Lett. 65, 645–647 (1994) [CrossRef]
  19. A. I. Rahachou and I. V. Zozoulenko, “Light propagation in nanorod arrays,” J. Opt. A: Pure Appl. Opt. 9, 265–270 (2007). [CrossRef]
  20. I. El-Kady, M. Sigalas, R. Biswas, A. Ho, and C. M. Soukoulis, “Metallic photonic crystal at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000). [CrossRef]
  21. A. Madrazo and M. Nieto-Vesperinas, “Scattering of electromagnetic waves from a cylinder in front of a conducting plane,” J. Opt. Soc. Am. A 12, 1298–1309 (1995). [CrossRef]
  22. M. Lester, D. Skigin, and R. Depine, “Blaze produced by a dual period array of subwavelength cylinders,” J. Opt. A: Pure Appl. Opt. 11, 045705 (2009). [CrossRef]
  23. M. Lester and D. Skigin, “Coupling of evanescent s-polarized waves to the far field by waveguide modes in metallic arrays,” J. Opt. A: Pure Appl. Opt. 9, 81–87 (2007). [CrossRef]
  24. E.D.Palik, ed., Handbook of Optical Constants (Academic, 1985).
  25. J. A. Torres and J. J. Sáenz, “Improved generalized scattering matrix method: Conduction through ballistics nanowires,” J. Phys. Soc. Jpn. 73, 2182–2193 (2004). [CrossRef]
  26. A. García-Martín and J. J. Sáenz, “Statistical properties of wave transport through surface-desorder waveguides,” Waves Random Complex Media 15, 229–268 (2005). [CrossRef]
  27. R. Gómez-Medina, P. San Jose, A. García-Martín, M. Lester, M. Nieto-Vesperinas, and J. J. Sáenz, “Resonant radiation pressure on neutral particles in a waveguide,” Phys. Rev. Lett. 86, 4275–4277 (2001). [CrossRef] [PubMed]
  28. R. Gómez-Medina and J. J. Sáenz, “Unusually strong optical interactions between particles in quasi-one-dimensional geometries,” Phys. Rev. Lett. 93, 243602 (2004). [CrossRef]
  29. T. Sondergaard and K. Dridi, “Energy flow in photonic crystal waveguide,” Phys. Rev. B 61, 15688–15696 (2000). [CrossRef]
  30. H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003). [CrossRef]
  31. S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9, 3527–3531 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited