OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 780–786

Multipeaked fundamental and vortex solitons in azimuthally modulated Bessel lattices

Jiangbo Zheng and Liangwei Dong  »View Author Affiliations


JOSA B, Vol. 28, Issue 4, pp. 780-786 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000780


View Full Text Article

Enhanced HTML    Acrobat PDF (548 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the existence of multipeaked fundamental and vortex solitons in defocusing Kerr media with an imprinted azimuthally modulated Bessel lattice. Multipeaked solitons emanating from the fundamental linear lattice modes are stable in their entire existence domains. The number of soliton peaks is determined by the azimuthal index. Multipeaked vortex solitons with high topological charges in lattices exhibit special amplitude and phase distributions that resemble those of azimuthons. We reveal that the “stability rule” for vortex solitons in defocusing Kerr media is exactly opposite to that in focusing media. Multipeaked vortex solitons we obtained may provide a missing link between the radially symmetric vortices and nonrotating soliton clusters.

© 2011 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 28, 2010
Revised Manuscript: January 3, 2011
Manuscript Accepted: February 1, 2011
Published: March 21, 2011

Citation
Jiangbo Zheng and Liangwei Dong, "Multipeaked fundamental and vortex solitons in azimuthally modulated Bessel lattices," J. Opt. Soc. Am. B 28, 780-786 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-4-780


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibres to Photonic Crystals (Academic, 2003).
  2. F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463, 1–126 (2008). [CrossRef]
  3. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422, 147–150 (2003). [CrossRef] [PubMed]
  4. J. Yang and Z. H. Musslimani, “Fundamental and vortex solitons in a two-dimensional optical lattice,” Opt. Lett. 28, 2094–2096(2003). [CrossRef] [PubMed]
  5. J. Yang, I. Makasyuk, A. Beza, and Z. Chen, “Dipole solitons in optically induced two-dimensional photonic lattices,” Opt. Lett. 29, 1662–1664 (2004). [CrossRef] [PubMed]
  6. J. Yang, “Stability of vortex solitons in a photorefractive optical lattice,” New J. Phys. 6, 47 (2004). [CrossRef]
  7. A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, “Optical vortices and vortex solitons,” Prog. Opt. 47, 291–391 (2005). [CrossRef]
  8. J. Yang, I. Makasyuk, P. G. Kevrekidis, H. Martin, B. A. Malomed, D. J. Frantzeskakis, and Z. Chen, “Necklacelike solitons in optically induced photonic lattices,” Phys. Rev. Lett. 94, 113902(2005). [CrossRef] [PubMed]
  9. G. Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Segev, “Observation of second-band vortex solitons in 2D photonic lattices,” Phys. Rev. Lett. 95, 053904 (2005). [CrossRef] [PubMed]
  10. Y. V. Kartashov, R. Carretero-Gonzalez, B. A. Malomed, V. A. Vysloukh, and L. Torner, “Multipole-mode solitons in Bessel optical lattices,” Opt. Express 13, 10703–10710 (2005). [CrossRef] [PubMed]
  11. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Stable ring-profile vortex solitons in Bessel optical lattices,” Phys. Rev. Lett. 94, 043902 (2005). [CrossRef] [PubMed]
  12. D. Mihalache, D. Mazilu, F. Lederer, B. A. Malomed, Y. V. Kartashov, L.-C. Crasovan, and L. Torner, “Stable spatiotemporal solitons in Bessel optical lattices,” Phys. Rev. Lett. 95, 023902 (2005). [CrossRef] [PubMed]
  13. L. Dong, H. Wang, W. Zhou, X. Yang, X. Lv, and H. Chen, “Necklace solitons and ring solitons in Bessel optical lattices,” Opt. Express 16, 5649–5655 (2008). [CrossRef] [PubMed]
  14. L. Dong, J. Wang, H. Wang, and G. Yin, “Broken ring solitons in Bessel optical lattices,” Opt. Lett. 33, 2989–2991 (2008). [CrossRef] [PubMed]
  15. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Rotary solitons in Bessel optical lattices,” Phys. Rev. Lett. 93, 093904 (2004). [CrossRef] [PubMed]
  16. Y. V. Kartashov, A. Egorov, V. Vysloukh, and L. Torner, “Rotary dipole-mode solitons in Bessel optical lattices,” J. Opt. B 6, 444–447 (2004). [CrossRef]
  17. X. Wang, Z. Chen, and P. G. Kevrekidis, “Observation of discrete solitons and soliton rotation in optically induced periodic ring lattices,” Phys. Rev. Lett. 96, 083904 (2006). [CrossRef] [PubMed]
  18. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Solitons in complex optical lattices,” Eur. Phys. J. Special Top. 173, 87–105 (2009). [CrossRef]
  19. Y. V. Kartashov, A. A. Egorov, V. A. Vysloukh, and L. Torner, “Stable soliton complexes and azimuthal switching in modulated Bessel optical lattices,” Phys. Rev. E 70, 065602 (2004). [CrossRef]
  20. Y. V. Kartashov, A. Ferrando, A. A. Egorov, and L. Torner, “Soliton topology versus discrete symmetry in optical lattices,” Phys. Rev. Lett. 95, 123902 (2005). [CrossRef] [PubMed]
  21. R. Fischer, D. N. Neshev, S. Lopez-Aguayo, A. S. Desyatnikov, A. A. Sukhorukov, W. Krolikowski, and Y. S. Kivshar, “Light localization in azimuthally modulated Bessel photonic lattices,” J. Mater. Sci. Mater. Electron. 18, S277–S283 (2007). [CrossRef]
  22. R. Fischer, D. N. Neshev, S. Lopez-Aguayo, A. S. Desyatnikov, A. A. Sukhorukov, W. Krolikowski, and Y. S. Kivshar, “Observation of light localization in modulated Bessel optical lattices,” Opt. Express 14, 2825–2830 (2006). [CrossRef] [PubMed]
  23. A. S. Desyatnikov, A. A. Sukhorukov, and Y. S. Kivshar, “Azimuthons: spatially modulated vortex solitons,” Phys. Rev. Lett. 95, 203904 (2005). [CrossRef] [PubMed]
  24. A. S. Desyatnikov and Y. S. Kivshar, “Rotating optical soliton clusters,” Phys. Rev. Lett. 88, 053901 (2002). [CrossRef] [PubMed]
  25. S. Lopez-Aguayo, A. S. Desyatnikov, Y. S. Kivshar, S. Skupin, W. Krolikowski, and O. Bang, “Stable rotating dipole solitons in nonlocal optical media,” Opt. Lett. 31, 1100–1102 (2006). [CrossRef] [PubMed]
  26. S. Lopez-Aguayo, A. S. Desyatnikov, and Y. S. Kivshar, “Azimuthons in nonlocal nonlinear media,” Opt. Express 14, 7903–7908 (2006). [CrossRef] [PubMed]
  27. F. Maucher, D. Buccoliero, S. Skupin, M. Grech, A. S. Desyatnikov, and W. Krolikowski, “Tracking azimuthons in nonlocal nonlinear media,” Opt. Quantum Electron. 41, 337–348 (2009). [CrossRef]
  28. V. M. Lashkin, “Two-dimensional multisolitons and azimuthons in Bose-Einstein condensates,” Phys. Rev. A 77, 025602 (2008). [CrossRef]
  29. V. M. Lashkin, E. A. Ostrovskaya, A. S. Desyatnikov, and Y. S. Kivshar, “Vector azimuthons in two-component Bose-Einstein condensates,” Phys. Rev. A 80, 013615 (2009). [CrossRef]
  30. B. Terhalle, T. Richter, K. J. H. Law, D. Göries, P. Rose, T. J. Alexander, P. G. Kevrekidis, A. S. Desyatnikov, W. Krolikowski, F. Kaiser, C. Denz, and Y. S. Kivshar, “Observation of double-charge discrete vortex solitons in hexagonal photonic lattices,” Phys. Rev. A 79, 043821 (2009). [CrossRef]
  31. K. J. H. Law, P. G. Kevrekidis, T. J. Alexander, W. Królikowski, and Y. S. Kivshar, “Stable higher-charge discrete vortices in hexagonal optical lattices,” Phys. Rev. A 79, 025801 (2009). [CrossRef]
  32. L. Dong, F. Ye, and H. Wang, “Suppression of azimuthal instability of ring vortex solitons,” New J. Phys. 11, 073026(2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited