OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 787–791

Modeling of photonic crystal fibers from the scalar wave equation with a purely transverse linearly polarized vector potential

Pedro Torres, Víctor H. Aristizábal, and Miguel V. Andrés  »View Author Affiliations


JOSA B, Vol. 28, Issue 4, pp. 787-791 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000787


View Full Text Article

Enhanced HTML    Acrobat PDF (434 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, we propose a new technique for modeling light propagation in photonic crystal fibers where the electric field is evaluated from a purely transverse linearly polarized vector potential. The vector potential in a nonuniform dielectric obeys a wave equation coupled to the scalar potential, but it can be reduced to a scalar wave equation when the coupling term is ignored to the lowest order approximation. We show that this method gives reliable results for photonic crystal fibers when the scalar analysis is improved by a perturbational correction.

© 2011 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 14, 2010
Revised Manuscript: December 13, 2010
Manuscript Accepted: December 22, 2010
Published: March 22, 2011

Citation
Pedro Torres, Víctor H. Aristizábal, and Miguel V. Andrés, "Modeling of photonic crystal fibers from the scalar wave equation with a purely transverse linearly polarized vector potential," J. Opt. Soc. Am. B 28, 787-791 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-4-787


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997). [CrossRef] [PubMed]
  2. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. de Sandro, “Large mode area photonic crystal fiber,” Electron. Lett. 34, 1347–1348 (1998). [CrossRef]
  3. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: Measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999). [CrossRef]
  4. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12, 807–809 (2000). [CrossRef]
  5. W. H. Reeves, J. C. Knight, P. Russell, and P. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10, 609–613 (2002). [PubMed]
  6. A. Huttunen and P. Törmä, “Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area,” Opt. Express 13, 627–635 (2005). [CrossRef] [PubMed]
  7. A. Ferrando, E. Silvester, J. J. Miret, P. Andrés, and M. V. Andrés, “Full vector analysis of a realistic photonic crystal fiber,” Opt. Lett. 24, 276–278 (1999). [CrossRef]
  8. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Modeling large air fraction holey optical fibers,” J. Lightwave Technol. 18, 50–56 (2000). [CrossRef]
  9. D. Mogilevtsev, T. A. Birks, and P. S. J. Russell, “Localized function method for modeling defect modes in 2-D photonic crystals,” J. Lightwave Technol. 17, 2078–2081 (1999). [CrossRef]
  10. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002). [CrossRef]
  11. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002). [CrossRef]
  12. S. Campbell, R. C. McPhedran, C. M. de Sterke, and L. C. Botten, “Differential multipole method for microstructured optical fibers,” J. Opt. Soc. Am. B 21, 1919–1928 (2004). [CrossRef]
  13. N. A. Issa and L. Poladian, “Vector wave expansion method for leaky modes of microstructured optical fibers,” J. Lightwave Technol. 21, 1005–1012 (2003). [CrossRef]
  14. P. Boyer, G. Renversez, E. Popov, and M. Nevière, “Improved differential method for microstructured optical fibres,” J. Opt. A: Pure Appl. Opt. 9, 728–740 (2007). [CrossRef]
  15. E. Silvestre, T. Pinheiro-Ortega, P. Andrés, J. J. Miret, and A. Ortigosa-Blanch, “Analytical evaluation of chromatic dispersion in photonic crystal fibers,” Opt. Lett. 30, 453–455 (2005). [CrossRef] [PubMed]
  16. F. Fogli, L. Saccomandi, P. Bassi, G. Bellanca, and S. Trillo, “Full vectorial BPM modeling of index-guiding photonic crystal fibers and couplers,” Opt. Express 10, 54–59 (2002). [PubMed]
  17. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927–933 (2002). [CrossRef]
  18. C. P. Yu and H. C. Chang, “Applications of the finite difference mode solution method to photonic crystal structures,” Opt. Quantum Electron. 36, 145–163 (2004). [CrossRef]
  19. Z. Zhu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10, 853–864(2002). [PubMed]
  20. M. Qiu, “Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method,” Microw. Opt. Tech. Lett. 30, 327–330 (2001). [CrossRef]
  21. N. Guan, S. Habu, K. Takenaga, K. Himeno, and A. Wada, “Boundary element method for analysis of holey optical fibers,” J. Lightwave Technol. 21, 1787–1792 (2003). [CrossRef]
  22. T.-L. Wu and C.-H. Chao, “Photonic crystal fiber analysis through the vector boundary-element method: Effect of elliptical air hole,” IEEE Photonics Technol. Lett. 16, 126–128 (2004). [CrossRef]
  23. K. Saitoh and M. Koshiba, “Numerical modeling of photonic crystal fibers,” J. Lightwave Technol. 23, 3580–3580 (2005). [CrossRef]
  24. V. H. Aristizábal, F. J. Vélez, and P. Torres, “Analysis of photonic crystal fibers: Scalar solution and polarization correction,” Opt. Express 14, 11848–11854 (2006). [CrossRef] [PubMed]
  25. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic, 2000).
  26. ARPACK Numerical Library, http://www.netlib.org/arpack.
  27. H. Uranus and H. Hoekstra, “Modelling of microstructured waveguides using a finite-element-based vectorial mode solver with transparent boundary conditions,” Opt. Express 12, 2795–2809 (2004). [CrossRef] [PubMed]
  28. M. Szpulak, W. Urbanczyk, E. Serebryannikov, A. Zheltikov, A. Hochman, Y. Leviatan, R. Kotynski, and K. Panajotov, “Comparison of different methods for rigorous modeling of photonic crystal fibers,” Opt. Express 14, 5699–5714 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited