OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 796–804

Ultrafast broadband terahertz waveform measurement utilizing ultraviolet plasma photoemission

Jingle Liu, Jianming Dai, and X.-C. Zhang  »View Author Affiliations


JOSA B, Vol. 28, Issue 4, pp. 796-804 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000796


View Full Text Article

Enhanced HTML    Acrobat PDF (1613 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper reviews the recent progress in the development of ultrafast broadband terahertz waveform measurement utilizing ultraviolet photoemission from laser-induced gases. We present the theoretical study and experimental investigation on ultrafast dynamics of terahertz-enhanced photoemission in various gas species. By using two-color laser field to coherently control the electron drift velocity and subsequent terahertz-enhanced photoemission, we develop an “all-optical” broadband terahertz waveform measurement method, which, by encoding terahertz pulse information into plasma photoemission, is capable of remote operation due to the minimized water vapor attenuation and unlimited optical signal collection. Broadband terahertz waveform measurement at a distance of 10 m is demonstrated.

© 2011 Optical Society of America

OCIS Codes
(350.5400) Other areas of optics : Plasmas
(040.2235) Detectors : Far infrared or terahertz
(110.5125) Imaging systems : Photoacoustics
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Ultrafast Optics

History
Original Manuscript: September 14, 2010
Revised Manuscript: December 6, 2010
Manuscript Accepted: December 22, 2010
Published: March 22, 2011

Citation
Jingle Liu, Jianming Dai, and X.-C. Zhang, "Ultrafast broadband terahertz waveform measurement utilizing ultraviolet plasma photoemission," J. Opt. Soc. Am. B 28, 796-804 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-4-796


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002). [CrossRef]
  2. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002). [CrossRef]
  3. R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159(2002). [CrossRef] [PubMed]
  4. D. Grischkowsky, S. Keiding, M. v. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990). [CrossRef]
  5. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy,” Phys. Rev. B 62, 15764 (2000). [CrossRef]
  6. C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades, “Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,” J. Pharm. Sci. 94, 837–846 (2005). [CrossRef] [PubMed]
  7. M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 44–52 (2003). [CrossRef]
  8. M. van Exter, C. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989). [CrossRef]
  9. Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995). [CrossRef]
  10. P. U. Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–R3054 (1996). [CrossRef]
  11. A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–152 (1996). [CrossRef]
  12. N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, and K. Johnson, “Coherent heterodyne time-domain spectrometry covering the entire terahertz gap,”' Appl. Phys. Lett. 92, 011131 (2008). [CrossRef]
  13. J. Liu and X. C. Zhang, “Terahertz-radiation-enhanced emission of fluorescence from gas plasma,” Phys. Rev. Lett. 103, 235002 (2009). [CrossRef]
  14. J. Liu, J. Dai, S. L. Chin, and X. C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photon. 4, 627–631 (2010). [CrossRef]
  15. A. Talebpour and C.-Y. Chien, and S. L. Chin, “Population trapping in rare gases,” J. Phys. B 29, 5725–5733 (1996). [CrossRef]
  16. H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, “The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air,” Chem. Phys. 360, 171–175 (2009). [CrossRef]
  17. J. Liu and X.-C. Zhang, “Plasma characterization using terahertz–wave–enhanced fluorescence,” Appl. Phys. Lett. 96, 041505 (2010). [CrossRef]
  18. K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007). [CrossRef]
  19. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Femtosecond pulse propagation in argon: A pressure dependence study,” Phys. Rev. E 58, 4903–4910 (1998). [CrossRef]
  20. J. Dai, N. Karpowicz, and X. C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett. 103, 023001 (2009). [CrossRef] [PubMed]
  21. K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15, 4577–4584 (2007). [CrossRef] [PubMed]
  22. M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited