OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 805–811

Thermally induced depolarization in sesquioxide class m3 single crystals

Anton G. Vyatkin and Efim A. Khazanov  »View Author Affiliations

JOSA B, Vol. 28, Issue 4, pp. 805-811 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (939 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have investigated the thermally induced depolarization degree in long-rod cubic crystals of classes 23 and m3 as a function of the heated region and the probe beam radii as well as on crystal orientation. We extended the photoelastic anisotropy parameter and introduced a second anisotropy parameter. Three new specific crystal orientations were defined. General theorems on specific orientations were proved. The best and the worst orientations were determined. They are close or equal to the specific ones in most cases.

© 2011 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.6810) Lasers and laser optics : Thermal effects

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 29, 2010
Revised Manuscript: December 29, 2010
Manuscript Accepted: January 10, 2011
Published: March 22, 2011

Anton G. Vyatkin and Efim A. Khazanov, "Thermally induced depolarization in sesquioxide class m3 single crystals," J. Opt. Soc. Am. B 28, 805-811 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express 15, 7075–7082 (2007). [CrossRef] [PubMed]
  2. K. Contag, M. Larionov, A. Giesen, V. Peters, E. Mix, and L. Fornasiero, “Thin disk laser operation and spectroscopic characterization of Yb-doped sesquioxides,” in Advanced Solid-State Lasers, Vol.  50 of OSA Trends Optics Photonics(Optical Society of America, 2001), paper WC4.
  3. T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97, 281–295 (2009). [CrossRef]
  4. P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, and G. Erbert, “Highly efficient mode-locked Yb:Sc2O3 laser,” Opt. Lett. 29, 391–393 (2004). [CrossRef] [PubMed]
  5. S. V. Marchese, C. R. E. Baer, R. Peters, C. Kränkel, A. G. Engqvist, M. Golling, D. J. H. C. Maas, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Efficient femtosecond high power Yb:Lu2O3 thin disk laser,” Opt. Express 15, 16966–16971 (2007). [CrossRef] [PubMed]
  6. C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, T. Südmeyer, R. Peters, K. Petermann, G. Huber, and U. Keller, “Femtosecond Yb:Lu2O3 thin disk laser with 63 W of average power,” Opt. Lett. 34, 2823–2825 (2009). [CrossRef] [PubMed]
  7. C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35, 2302–2304 (2010). [CrossRef] [PubMed]
  8. O. H. Heckl, R. Peters, C. Kränkel, C. R. Baer, C. J. Saraceno, T. Südmeyer, K. Petermann, U. Keller, and G. Huber, “Continuous-wave Yb-doped sesquioxide thin disk lasers with up to 300 W output power and 74% efficiency,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AMD1.
  9. A. Schmidt, V. Petrov, U. Griebner, R. Peters, K. Petermann, G. Huber, C. Fiebig, K. Paschke, and G. Erbert, “Diode-pumped mode-locked Yb:LuScO3 single crystal laser with 74 fs pulse duration,” Opt. Lett. 35, 511–513 (2010). [CrossRef] [PubMed]
  10. A. Shirakawa, K. Takaichi, H. Yagi, J.-F. Bisson, J. Lu, M. Musha, K. Ueda, T. Yanagitani, T. S. Petrov, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Y2O3 ceramic laser,” Opt. Express 11, 2911–2916 (2003). [CrossRef] [PubMed]
  11. A. Shirakawa, K. Takaichi, H. Yagi, M. Tanisho, J.-F. Bisson, J. Lu, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “First mode-locked ceramic laser: femtosecond Yb3+:Y2O3 ceramic laser,” Laser Phys. 14, 1375–1381 (2004).
  12. J. Kong, D. Y. Tang, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “Diode-end-pumped 4.2 W continuous-wave Yb:Y2O3 ceramic laser,” Opt. Lett. 29, 1212–1214 (2004). [CrossRef] [PubMed]
  13. M. Tokurakawa, K. Takaichi, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser,” Opt. Express 14, 12832–12838 (2006). [CrossRef] [PubMed]
  14. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express 17, 3353–3361 (2009). [CrossRef] [PubMed]
  15. J. F. Nye, Physical Properties of Crystals (Oxford University Press, 1964).
  16. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, 1999).
  17. J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41, 3656–3663 (1970). [CrossRef]
  18. G. A. Massey, “Criterion for selection of cw laser host materials to increase available power in the fundamental mode,” Appl. Phys. Lett. 17, 213–215 (1970). [CrossRef]
  19. W. Koechner, “Absorbed pump power, thermal profile and stresses in a cw pumped Nd:YAG crystal,” Appl. Opt. 9, 1429–1434 (1970). [CrossRef] [PubMed]
  20. W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. QE-6, 557–566 (1970). [CrossRef]
  21. M. A. Karr, “Nd:YAlG laser cavity loss due to an internal Brewster polarizer,” Appl. Opt. 10, 893–895 (1971). [CrossRef] [PubMed]
  22. L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “On the problem of depolarization of linearly polarized light by a YAG:Nd3+ laser rod under conditions of thermally induced birefringence,” Sov. J. Quantum Electron. 10, 350–351 (1980). [CrossRef]
  23. L. N. Soms and A. A. Tarasov, “Thermal deformation in color-center laser active elements,” Sov. J. Quantum Electron. 9, 1506–1508 (1979). [CrossRef]
  24. I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80, 3048–3050 (2002). [CrossRef]
  25. E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett. 27, 716–718 (2002). [CrossRef]
  26. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81, 90–94(2005). [CrossRef]
  27. I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Reduction of thermally induced depolarization of laser radiation in [110] oriented cubic crystals,” Opt. Express 17, 5496–5500 (2009). [CrossRef] [PubMed]
  28. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002). [CrossRef] [PubMed]
  29. W. Koechner and D. K. Rice, “Birefringence of YAG:Nd laser rods as a function of growth direction,” J. Opt. Soc. Am. 61, 758–766 (1971). [CrossRef]
  30. S. Bochner and K. Chandrasekharan, Fourier Transforms(Princeton University Press, 1949).
  31. S. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1951).
  32. F. W. Quelle, “Thermal distortion of diffraction-limited optical elements,” Appl. Opt. 5, 633–637 (1966). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited