OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 842–850

Monomer diffusion rates in photopolymer material. Part II. High-frequency gratings and bulk diffusion

C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan  »View Author Affiliations


JOSA B, Vol. 28, Issue 4, pp. 842-850 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000842


View Full Text Article

Enhanced HTML    Acrobat PDF (785 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photosensitive polymers are of practical importance, and mass transport within such materials plays a critical role in their behavior. Building on the work in Part I [J. Opt. Soc. Am. B doc. ID 136413 (posted 5 January 2011, in press)], the diffusion constants of a number of materials (i.e., acrylamide, polyacrylamide, water, propanol, and acetone) within a photosensitive layer are measured. A combination of optical and physical chemistry techniques is applied under different conditions. Determining the rates of diffusion is beneficial as it: (i) indicates material stability over time and (ii) supports material characterization, modeling, and performance optimization.

© 2011 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(050.7330) Diffraction and gratings : Volume gratings
(090.0090) Holography : Holography
(090.2900) Holography : Optical storage materials
(160.5470) Materials : Polymers

ToC Category:
Holography

History
Original Manuscript: October 25, 2010
Revised Manuscript: December 21, 2010
Manuscript Accepted: January 16, 2011
Published: March 23, 2011

Citation
C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, "Monomer diffusion rates in photopolymer material. Part II. High-frequency gratings and bulk diffusion," J. Opt. Soc. Am. B 28, 842-850 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-4-842


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28, 658–666 (2011). [CrossRef]
  2. J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotech. 7, 232–242 (2007). [CrossRef]
  3. I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004). [CrossRef] [PubMed]
  4. T. Babeva, I. Naydenova, S. Martin, and V. Toal, “Method for characterization of diffusion properties of photopolymerisable systems,” Opt. Express 16, 8487–8497 (2008). [CrossRef] [PubMed]
  5. S. Gallego, A. Marquez, D. Mendez, C. Neipp, M. Ortuno, A. Belendez, E. Fernandez, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92, 073306 (2008). [CrossRef]
  6. S. Gallego, A. Marquez, S. Marini, E. Fernandez, M. Ortuno, and I. Parcual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17, 18279–19291 (2009). [CrossRef] [PubMed]
  7. S. Blaya, L. Carretero, P. Acebal, R. F. Madrigal, A. Murciano, M. Ulibarrena, and A. Fimia, “Analysis of the diffusion processes in dry photopolymerizable holographic recording materials,” Proc. SPIE 5827, 128–139 (2005). [CrossRef]
  8. J. Ashley, M. P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44, 341–368 (2000). [CrossRef]
  9. F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40, 4129–4132(2005). [CrossRef]
  10. G. P. Nordinand and A. R. Tanguay, Jr., “Photopolymer-based stratified volume holographic optical elements,” Opt. Lett. 17, 1709–1711 (1992). [CrossRef] [PubMed]
  11. R. K. Kostuk, J. Castro, and D. Zhang, “Holographic low concentration ratio solar concentrators,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB3.
  12. J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407(2006). [CrossRef] [PubMed]
  13. A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt. 46, 295–301 (2007). [CrossRef] [PubMed]
  14. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Niepp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerisation-driven diffusion model,” Opt. Express 13, 6990–7004 (2005). [CrossRef] [PubMed]
  15. M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Lui, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007). [CrossRef]
  16. S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462–9472 (2010). [CrossRef]
  17. W. Kuhn and G. Balmer, “Crosslinking of single linear macromolecules,” J. Polym. Sci. 57, 311–319 (1962). [CrossRef]
  18. S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behaviour of two different photosensitisers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528–536(2009). [CrossRef]
  19. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. A Pure Appl. Opt. 3, 20–25 (2001). [CrossRef]
  20. L. Aubrecht, M. Miller, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998). [CrossRef]
  21. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  22. C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Using short exposures to approximate diffusion rates,” Proc. SPIE 7717, 77171O (2010). [CrossRef]
  23. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939(1994). [CrossRef]
  24. S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639–662 (2003). [CrossRef]
  25. J. Guo, S. Liu, M. R. Gleeson, and J. T. Sheridan, “Theoretical analysis and experimental validation of photosensitizer diffusion in a photopolymer material,” Proc. SPIE 7717, 77170Y(2010). [CrossRef]
  26. L. Masaro and X. X. Zhu, “Physical models of diffusion for polymer solutions, gels and solids,” Prog. Polym. Sci. 24, 731–775(1999). [CrossRef]
  27. O. Chiantore, L. Costa, and M. Guaita, “Glass temperatures of acrylamide polymers,” Macromol. Rapid Commun. 3, 303–309(1982). [CrossRef]
  28. A. V. Veniaminov and H. Sillescu, “Polymer and dye probe diffusion in poly(methyl methacrylate) below the glass transition studied by forced Rayleigh scattering,” Macromolecules 32, 1828–1837 (1999). [CrossRef]
  29. W. M. Lee, “Selection of barrier materials from molecular structure,” Polym. Eng. Sci. 20, 65–69 (1980). [CrossRef]
  30. S. Blaya, L. Carretero, P. Acebal, R. F. Madrigal, A. Murciano, M. Ulibarrena, and A. Fimia, “Analysis of the diffusion processes in dry photopolymerizable holographic recording materials,” Proc. SPIE 5827, 128–139 (2005). [CrossRef]
  31. J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford University, 1975).
  32. J. S. Papanu, D. W. Hess, A. T. Bell, and D. S. Soane, “In situ ellipsometry to monitor swelling and dissolution of thin polymer films,” J. Electrochem. Soc. 136, 1195–1200 (1989). [CrossRef]
  33. D. G. Bucknall, S. A. Butler, and J. S. Higgins, “Real-time measurement of polymer diffusion coefficients using neutron reflection,” Macromolecules 32, 5453–5456 (1999). [CrossRef]
  34. E. D. Von Meerwall, “Self-diffusion in polymer systems measured with field-gradient spin echo NMR methods,” in Spectroscopy: NMR, Fluorescence, FT-IR, H.Cantow, G.Dall’Asta, K.Dusek, J.D.Ferry, H.Fujita, M.Gordon, G.Henrici-Olivé, H.Kausch, J.P.Kennedy, W.Kern, S.Okamura, S.Olivé, C.G.Overberger, T.Saegusa, G.V.Schulz, W.P.Slichter, and J.K.Stille, eds. (Springer-Verlag, 1984), pp. 1–29.
  35. B. A. Westin, A. Axelsson, and G. Zacchi, “Diffusion measurement in gels,” J. Control. Release 30, 189–199 (1994). [CrossRef]
  36. Sartorius Mechtronics, “Analytical balances ED,” http://www.sartorius-mechatronics.com/WW/en/Analytical-Balances/Analytical-Balances-ED-/5iuzdcox3vk/a7pet8rqa68/mp.htm?view=desc.
  37. Omega Engineering, Inc., “Technical reference section,” http://www.omega.com/temperature/Z/zsection.asp.
  38. S. Shukla, A. K. Bajpai, and E. A. Kilkarni, “Preparation, characterisation, and water-sorption study of polyvinyl alcohol based hydrogels with grafted hydrophilic and hydrophobic segments,” J. Appl. Polym. Sci. 95, 1129–1142 (2005). [CrossRef]
  39. C. P. Smyth, Dielectric Behaviour and Structure (McGraw-Hill, 1955).
  40. Chemical Engineering Research Information Center, “Pure component properties,” http://www.cheric.org/research/kdb/.
  41. I. M. El-Anwar, O. M. El-Nabaway, S. A. El-Hennwii, and A. H. Salama, “Dielectric properties of polyacrylamide and its utilization as a hydrogel,” Chaos Solitons Fractals 11, 1303–1311(2000). [CrossRef]
  42. M. J. Fevola, R. D. Hester, and C. L. McCormick, “Molecular weight control of poly (acrylamide) with sodium formate as a chain-transfer agent: characterization via size exclusion chromatography/multi-angle laser light scattering and determination of chain-transfer constant,” J. Polym. Sci., Part A: Polym. Chem. 41, 560–568 (2003). [CrossRef]
  43. S. Gallego, A. Marquez, D. Mendez, C. Neipp, M. Ortuno, A. Belendez, E. Fernandez, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92, 073306 (2008). [CrossRef]
  44. S. Blaya, L. Carretero, P. Acebal, R. F. Madrigal, A. Murciano, M. Ulibarrena, and A. Fimia, “Analysis of the diffusion processes in dry photopolymerizable holographic recording materials,” Proc. SPIE 5827, 128–139 (2005). [CrossRef]
  45. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006). [CrossRef]
  46. B. Cuq, N. Gontard, J. Cuq, and S. Guilbert, “Selected functional properties of fish myofibrillar protein-based films as affected by hydrophilic plasticizers,” J. Agric. Food Chem. 45, 622–626(1997). [CrossRef]
  47. M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymers by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008). [CrossRef]
  48. Sigma Aldrich, “Solvent centre,” www.sigmaaldrich.com.
  49. M. Uematsu and E. U. Franck, “Static dielectric constant of water and steam,” J. Phys. Chem. Ref. Data 9, 1291–1306(1980). [CrossRef]
  50. S. A. Clough, Y. Beers, G. P. Klein, and L. S. Rothman, “Dipole moment of water from Stark measurements of H2O, HDO and D2O,” J. Chem. Phys. 59, 2254–2259 (1973). [CrossRef]
  51. P. W. Khirade, A. Chaudhari, J. B. Shinde, S. N. Helambe, and S. C. Mehrotra, “Temperature dependant dielectric relaxation of 2-ethoxyethanol, ethanol, and 1-propanol in dimethylformamide solution using the time domain technique,” J. Solution Chem. 28, 1031–1043 (1999). [CrossRef]
  52. L. Pogliani, “Model with dual indices and complete graphs. The heterogeneous description of the dipole moments and polarizabilites,” New J. Chem. 27, 919–927 (2003). [CrossRef]
  53. R. S. Becker and K. Freedman, “A comprehensive investigation of the mechanism and photophysics of isomerisation of a protonated and unprotonated Schiff base of 11-cis-retinal,” J. Am. Chem. Soc. 107, 1477–1485 (1985). [CrossRef]
  54. P. Kumar, F. W. Starr, S. V. Buldyrev, and H. E. Stanley, “Effect of water-wall interaction potential on the properties of nanoconfined water,” Phys. Rev. E 75, 011202 (2007). [CrossRef]
  55. A. P. D’Silva, G. Harrison, A. R. Horrocks, and D. Rhodes, “Investigation into cotton fibre morphology part III: Effect of alcohol treatment on water absorption,” J. Text. Inst. 91, 123–131(2000). [CrossRef]
  56. R. E. Rebbert and P. Ausloos, “Quenching of the triplet state of acetone and biacetyl by various unsaturated hydrocarbons,” J. Am. Chem. Soc. 87, 5569–5572 (1965). [CrossRef]
  57. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, and R. Taylor, “Table of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds,” J. Chem. Soc. Perkin Trans. 2 2, S1–S19 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited