OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 882–891

Critical role of the energy spectrum in determining the nonlinear-optical response of a quantum system

Shoresh Shafei and Mark G. Kuzyk  »View Author Affiliations


JOSA B, Vol. 28, Issue 4, pp. 882-891 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000882


View Full Text Article

Enhanced HTML    Acrobat PDF (1311 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Studies aimed at understanding the global properties of the hyperpolarizabilities have focused on identifying universal properties when the hyperpolarizabilities are at the fundamental limit. These studies have taken two complimentary approaches: (1) Monte Carlo techniques that statistically probe the full parameter space of the Schrödinger equation using the sum rules as a constraint, and (2) numerical optimization studies of the first and second hyperpolarizability where models of the scalar and vector potentials are parameterized and the optimized parameters determined, from which universal properties are investigated. Here, we employ an energy spectrum constraint on the Monte Carlo method to bridge the divide between these two approaches. The results suggest an explanation for the origin of the factor of the 20–30 gap between the best molecules and the fundamental limits and establish the basis for the three-level ansatz.

© 2011 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: January 5, 2011
Manuscript Accepted: February 7, 2011
Published: March 23, 2011

Citation
Shoresh Shafei and Mark G. Kuzyk, "Critical role of the energy spectrum in determining the nonlinear-optical response of a quantum system," J. Opt. Soc. Am. B 28, 882-891 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-4-882


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. G. Kuzyk, “Physical limits on electronic nonlinear molecular susceptibilities,” Phys. Rev. Lett. 85, 1218–1221 (2000). [CrossRef] [PubMed]
  2. M. G. Kuzyk, “Fundamental limits on third-order molecular susceptibilities,” Opt. Lett. 25, 1183–1185 (2000). [CrossRef]
  3. M. G. Kuzyk, “Quantum limits of the hyper-Rayleigh scattering susceptibility,” IEEE J. Sel. Top. Quantum Electron. 7, 774–780(2001). [CrossRef]
  4. M. G. Kuzyk, “Errata,” Opt. Lett. 28, 135–135 (2003). [CrossRef]
  5. M. G. Kuzyk, “Errata,” Phys. Rev. Lett. 90, 039902 (2003). [CrossRef]
  6. K. Tripathy, J. Pérez-Moreno, M. G. Kuzyk, B. J. Coe, K. Clays, and A. M. Kelley, “Why hyperpolarizabilities fall short of the fundamental quantum limits,” J. Chem. Phys. 121, 7932–7945(2004). [CrossRef] [PubMed]
  7. K. Tripathy, J. J. Pérez-Moreno, M. G. Kuzyk, B. J. Coe, K. Clays, and A. M. Kelley, “Errata,” J. Chem. Phys. 125, 079905 (2006). [CrossRef]
  8. A. D. Slepkov, F. A. Hegmann, S. Eisler, E. Elliot, and R. R. Tykwinski, “The surprising nonlinear optical properties of conjugated polyyne oligomers,” J. Chem. Phys. 120, 6807–6810(2004). [CrossRef] [PubMed]
  9. J. C. May, J. H. Lim, I. Biaggio, N. N. P. Moonen, T. Michinobu, and F. Diederich, “Highly efficient third-order optical nonlinearities in donor-substituted cyanoethynylethene molecules,” Opt. Lett. 30, 3057–3059 (2005). [CrossRef] [PubMed]
  10. J. C. May, I. Biaggio, F. Bures, and F. Diederich, “Extended conjugation and donor-acceptor substitution to improve the third-order optical nonlinearity of small molecules,” Appl. Phys. Lett. 90, 251106 (2007). [CrossRef]
  11. Q. Y. Chen, L. Kuang, Z. Y. Wang, and E. H. Sargent, “Cross-linked C-60 polymer breaches the quantum gap,” Nano Lett. 4, 1673–1675 (2004). [CrossRef]
  12. J. Zhou and M. G. Kuzyk, “Intrinsic hyperpolarizabilities as a figure of merit for electro-optic molecules,” J. Phys. Chem. C 112, 7978–7982 (2008). [CrossRef]
  13. M. G. Kuzyk, “Using fundamental principles to understand and optimize nonlinear-optical materials,” J. Mater. Chem. 19, 7444–7465 (2009). [CrossRef]
  14. H. Kang, A. Facchetti, P. Zhu, H. Jiang, Y. Yang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S. T. Ho, and T. J. Marks, “Exceptional molecular hyperpolarizabilities in twisted π-electron system chromophores,” Angew. Chem. Int. Ed. 44, 7922–7925 (2005). [CrossRef]
  15. H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. F. Liu, S. T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted π-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129, 3267–3286 (2007). [CrossRef] [PubMed]
  16. M. G. Kuzyk, “A birds-eye view of nonlinear-optical processes: unification through scale invariance,” Nonlinear Opt. Quantum Opt. 40, 1–13 (2010).
  17. R. Roberts, T. Schwich, T. Corkery, M. Cifuentes, K. Green, J. Farmer, P. Low, T. Marder, M. Samoc, and M. Humphrey, “Organometallic complexes for nonlinear optics. 45. Dispersion of the third-order nonlinear optical properties of triphenylamine-cored alkynylruthenium dendrimers,” Adv. Mater. 21, 2318–2322 (2009). [CrossRef]
  18. M. G. Kuzyk, “Fundamental limits on two-photon absorption cross-sections,” J. Chem. Phys. 119, 8327–8334 (2003). [CrossRef]
  19. J. Pérez-Moreno and M. G. Kuzyk, “Fundamental limits of the dispersion of the two-photon absorption cross section,” J. Chem. Phys. 123, 194101 (2005). [CrossRef] [PubMed]
  20. J. Pérez-Moreno and M. G. Kuzyk, “A correspondence on organometallic complexes for nonlinear optics. 45. Dispersion of the third-order nonlinear optical properties of triphenylamine-cored alkynylruthenium dendrimers. Increasing the nonlinear optical response by two orders of magnitude,” Adv. Mater. , doi:10.1002/adma.201003421 (published online 7 February 2011). [CrossRef] [PubMed]
  21. M. G. Kuzyk and D. S. Watkins, “The effects of geometry on the hyperpolarizability,” J. Chem. Phys. 124, 244104 (2006). [CrossRef] [PubMed]
  22. J. Zhou, M. G. Kuzyk, and D. S. Watkins, “Pushing the hyperpolarizability to the limit,” Opt. Lett. 31, 2891–2893 (2006). [CrossRef] [PubMed]
  23. J. Zhou, U. B. Szafruga, D. S. Watkins, and M. G. Kuzyk, “Optimizing potential energy functions for maximal intrinsic hyperpolarizability,” Phys. Rev. A 76, 053831 (2007). [CrossRef]
  24. J. Pérez-Moreno, Y. Zhao, K. Clays, and M. G. Kuzyk, “Modulated conjugation as a means for attaining a record high intrinsic hyperpolarizability,” Opt. Lett. 32, 59–61 (2007). [CrossRef]
  25. J. Pérez-Moreno, Y. Zhao, K. Clays, M. G. Kuzyk, Y. Shen, L. Qiu, J. Hao, and K. Guo, “Modulated conjugation as a means of improving the intrinsic hyperpolarizability,” J. Am. Chem. Soc. 131, 5084–5093 (2009). [CrossRef] [PubMed]
  26. D. S. Watkins and M. G. Kuzyk, “Optimizing the hyperpolarizability tensor using external electromagnetic fields and nuclear placement,” J. Chem. Phys. 131, 064110 (2009). [CrossRef] [PubMed]
  27. M. Wang, X. Hu, D. N. Beratan, and W. Yang, “Designing molecules by optimizing potentials,” J. Am. Chem. Soc. 128, 3228–3232 (2006). [CrossRef] [PubMed]
  28. M. C. Kuzyk and M. G. Kuzyk, “Monte Carlo studies of the fundamental limits of the intrinsic hyperpolarizability,” J. Opt. Soc. Am. B 25, 103–110 (2008). [CrossRef]
  29. S. Shafei, M. C. Kuzyk, and M. G. Kuzyk, “Monte Carlo studies of the intrinsic second hyperpolarizability,” J. Opt. Soc. Am. B 27, 1849–1856 (2010). [CrossRef]
  30. J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, and A. F. Garito, “Symmetry-controlled electron correlation mechanism for third order nonlinear optical properties of conjugated linear chains,” Mol. Cryst. Liq. Cryst. 160, 37–51 (1988). [CrossRef]
  31. J. R. Heflin, K. Y. Wong, O. Zamani-Khamiri, and A. F. Garito, “Nonlinear optical properties of linear chains and electron-correlation effects,” Phys. Rev. B 38, 1573–1576 (1988). [CrossRef]
  32. J. W. Wu, J. R. Heflin, R. A. Norwood, K. Y. Wong, O. Zamani-Khamiri, A. F. Garito, P. Kalyanaraman, and J. Sounik, “Nonlinear-optical processes in lower-dimensional conjugated structures,” J. Opt. Soc. Am. B 6, 707–20 (1989). [CrossRef]
  33. S. P. Goldman and G. W. F. Drake, “Relativistic sum rules and integral properties of the Dirac equation,” Phys. Rev. A 25, 2877–2881 (1982). [CrossRef]
  34. P. T. Leung and M. L. Rustgi, “Relativistic corrections to Bethe sum rule,” Phys. Rev. A 33, 2827–2829 (1986). [CrossRef] [PubMed]
  35. S. M. Cohen, “Aspects of relativistic sum rules,” Adv. Quantum Chem. 46, 241–265 (2004). [CrossRef]
  36. S. Keinan, M. J. Therien, D. N. Beratan, and W. T. Yang, “Molecular design of porphyrin-based nonlinear optical materials,” J. Phys. Chem. A 112, 12203–12207 (2008). [CrossRef] [PubMed]
  37. J. Pérez-Moreno, I. Asselberghs, Y. Zhao, K. Song, H. Nakanishi, S. Okada, K. Nogi, O.-K. Kim, J. Je, J. Matrai, M. De Mayer, and M. G. Kuzyk, “Combined molecular and supramolecular bottom-up nano-engineering for enhanced nonlinear optical response: experiments, modelling and approaching the fundamental limit,” J. Chem. Phys. 126, 074705 (2007). [CrossRef] [PubMed]
  38. M. G. Kuzyk, “Compact sum-over-states expression without dipolar terms for calculating nonlinear susceptibilities,” Phys. Rev. A 72, 053819 (2005). [CrossRef]
  39. J. Pérez-Moreno, K. Clays, and M. G. Kuzyk, “A new dipole-free sum-over-states expression for the second hyperpolarizability,” J. Chem. Phys. 128, 084109 (2008). [CrossRef] [PubMed]
  40. C. W. Dirk and M. G. Kuzyk, “Missing-state analysis: a method for determining the origin of molecular nonlinear optical properties,” Phys. Rev. A 39, 1219–1226 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited