OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 892–895

Theory and experiments on multistep parametric processes in nonlinear optics

M. Conforti, F. Baronio, C. De Angelis, M. Marangoni, and G. Cerullo  »View Author Affiliations


JOSA B, Vol. 28, Issue 4, pp. 892-895 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000892


View Full Text Article

Enhanced HTML    Acrobat PDF (307 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a comprehensive model for the description of different types of parametric interactions, associated with simultaneous phase-matching of several optical processes: the so-called multistep parametric interactions. Our approach is based on a recently derived single-wave broadband equation that is able to describe general quadratic nonlinear optical interactions and can be solved with modest computational effort. We compare theoretical results with experiments on simultaneous second- and third-harmonic generation performed in periodically poled lithium tantalate crystals.

© 2011 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(320.2250) Ultrafast optics : Femtosecond phenomena
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 20, 2010
Revised Manuscript: February 10, 2011
Manuscript Accepted: February 10, 2011
Published: March 23, 2011

Citation
M. Conforti, F. Baronio, C. De Angelis, M. Marangoni, and G. Cerullo, "Theory and experiments on multistep parametric processes in nonlinear optics," J. Opt. Soc. Am. B 28, 892-895 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-4-892


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961). [CrossRef]
  2. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).
  3. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]
  4. M. Conforti, F. Baronio, and C. De Angelis, “From femtosecond infrared to picosecond visible pulses: temporal shaping with high-efficiency conversion,” Opt. Lett. 32, 1779–1781(2007). [CrossRef] [PubMed]
  5. S. M. Saltiel, A. A. Sukhourukov, and Y. S. Kivshar, “Multistep parametric processes in nonlinear optics,” in Vol.  47 of Progress in Optics (Elsevier, 2005), pp. 1–73. [CrossRef]
  6. G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, “Simultaneously efficient blue and red light generations in a periodically poled LiTaO3,” Appl. Phys. Lett. 78, 3006–3008 (2001). [CrossRef]
  7. V. Couderc, E. L. Lago, A. Barthelemy, C. De Angelis, and F. Gringoli, “Trapping of a weak probe through coupling with a two-color quadratic spatial soliton,” Opt. Commun. 203, 421–425 (2002). [CrossRef]
  8. A. A. Sukhorukov, T. J. Alexander, Y. S. Kivshar, and S. M. Saltiel, “Multistep cascading and fourth harmonic generation,” Phys. Lett. A 281, 34–38 (2001). [CrossRef]
  9. M. C. Cardakli, D. Gurkan, S. A. Havstad, A. E. Willner, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Tunable all-optical time-slot-interchange and wavelength conversion using difference-frequency-generation and optical buffers,” IEEE Photon. Technol. Lett. 14, 200–202 (2002). [CrossRef]
  10. M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010). [CrossRef]
  11. M. Conforti, F. Baronio, and C. De Angelis, “Ultra-broadband optical phenomena in quadratic nonlinear media,” IEEE Photon. J. 2, 600–610 (2010). [CrossRef]
  12. S. Amiranashvili, U. Bandelow, and A. Milke, “Pade approximant for the refractive index and nonlocal envelope equations,” Opt. Commun. 283, 480–485 (2010). [CrossRef]
  13. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285(1997). [CrossRef]
  14. M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004). [CrossRef]
  15. P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A 81, 013819 (2010). [CrossRef]
  16. A. V. Housakou and J. Herrmnann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001). [CrossRef]
  17. Y.-Q. Qin, Y.-Y. Zhu, C. Zhang, and N.-B. Ming, “Theoretical investigations of efficient cascaded third-harmonic generation in quasi-phase-matched and -mismatched configurations,” J. Opt. Soc. Am. B 20, 73–82 (2003). [CrossRef]
  18. A. Bruner, D. Eger, M. B. Oron, P. Blau, and M. Katz, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28, 194–196(2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited