OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 896–907

Transmission measurements of hollow-core THz Bragg fibers

Alexandre Dupuis, Karen Stoeffler, Bora Ung, Charles Dubois, and Maksim Skorobogatiy  »View Author Affiliations


JOSA B, Vol. 28, Issue 4, pp. 896-907 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000896


View Full Text Article

Enhanced HTML    Acrobat PDF (954 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the terahertz (THz) spectral characteristics of hollow-core THz Bragg fibers. Two types of high-index contrast Bragg fibers were fabricated: one based on the index contrast between a polymer and air, and the second based on the contrast between a pure polymer and a polymer composite doped with high-index inclusions. The THz transmission of these waveguides is compared to theoretical simulations of ideal and nonideal structures. Waveguide dispersion is low, and total loss measurements allow us to estimate an upper bound of 0.05 cm 1 for the power absorption coefficient of these waveguides in certain frequency bands. We discuss multimode regimes, coupling losses, fabrication difficulties, and how bending losses will ultimately be the discriminant between different THz waveguiding strategies.

© 2011 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 29, 2010
Revised Manuscript: January 11, 2011
Manuscript Accepted: January 11, 2011
Published: March 23, 2011

Citation
Alexandre Dupuis, Karen Stoeffler, Bora Ung, Charles Dubois, and Maksim Skorobogatiy, "Transmission measurements of hollow-core THz Bragg fibers," J. Opt. Soc. Am. B 28, 896-907 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-4-896


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97–105 (2007). [CrossRef]
  2. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007). [CrossRef]
  3. K. Wang and M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004). [CrossRef] [PubMed]
  4. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31, 308–310 (2006). [CrossRef] [PubMed]
  5. J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Int. Opt. 19, 211–227 (2000). [CrossRef]
  6. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink,  “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779(2001). [CrossRef] [PubMed]
  7. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverseelectric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17, 14839–14850 (2009). [CrossRef] [PubMed]
  8. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004). [CrossRef] [PubMed]
  9. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230–1235 (2007). [CrossRef]
  10. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104, 093110 (2008). [CrossRef]
  11. R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microwave Wireless Comp. Lett. 11, 444–446 (2001). [CrossRef]
  12. R. Mendis and D. M. Mittleman, “An ultra low loss THz waveguide,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CPDA5. [PubMed]
  13. E. S. Lee, J. S. Jang, S. H. Kim, Y. B. Ji, and T.-I. Jeon, “Propagation of single-mode and multi-mode terahertz radiation through a parallel-plate waveguide,” J. Korean Phys. Soc. 53, 1891–1896(2008).
  14. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002). [CrossRef]
  15. M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16, 7–12 (2008). [CrossRef] [PubMed]
  16. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601(2009). [CrossRef] [PubMed]
  17. Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91, 333–336 (2008). [CrossRef]
  18. G. Ren, Y. Gong, P. Shum, X. Yu, J.-J. Hu, G. Wang, M. O. L. Chuen, and V. Paulose, “Low-loss air-core polarization maintaining terahertz fiber,” Opt. Express 16, 13593–13598 (2008). [CrossRef] [PubMed]
  19. C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33, 902–904 (2008). [CrossRef] [PubMed]
  20. T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF cladding terahertz waveguide,” J. Lightwave Technol. 23, 2469–2473 (2005). [CrossRef]
  21. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34, 3457–3459 (2009). [CrossRef] [PubMed]
  22. C.-S. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010). [CrossRef] [PubMed]
  23. J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008). [CrossRef]
  24. M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007). [CrossRef]
  25. R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007). [CrossRef]
  26. I. Bassett and A. Argyros, “Elimination of polarization degeneracy in round waveguides,” Opt. Express 10, 1342–1346 (2002). [PubMed]
  27. D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291–293 (2002). [CrossRef]
  28. W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281, 2374–2379 (2008). [CrossRef]
  29. Y. Han, M. Cho, H. Park, K. Moon, E. Jung, and H. Han, “Terahertz time-domain spectroscopy of ultra-high reflectance photonic crystal mirrors,” J. Korean Phys. Soc. 55, 508–511 (2009). [CrossRef]
  30. S.-Z. A. Lo and T. E. Murphy, “Nanoporous silicon multilayers for terahertz filtering,” Opt. Lett. 34, 2921–2923 (2009). [CrossRef] [PubMed]
  31. C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Fully flexible terahertz bragg reflectors based on titania loaded polymers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuN1. [PubMed]
  32. C. Jansen, F. Neubauer, J. Helbig, D. M. Mittleman, and M. Koch, “Flexible Bragg reflectors for the terahertz regime composed of polymeric compounds,” in Proceedings of IEEE Joint 32th International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics, (IEEE, 2007), pp. 984–986.
  33. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415–419 (2000). [CrossRef] [PubMed]
  34. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039–2041 (1999). [CrossRef]
  35. Y.-S. Jin, G.-J. Kim, and S.-Y. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517(2006).
  36. A. Dupuis, A. Mazhorova, F. Désévédavy, M. Rozé, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz bers fabricated using a microstructured molding technique,” Opt. Express 18, 13813–13828(2010). [CrossRef] [PubMed]
  37. M. Skorobogatiy and J. Yang, Fundamentals of Photonic Crystal Guiding, (Cambridge University Press, 2009).
  38. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977). [CrossRef]
  39. S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polymer Testing 26, 614–618 (2007). [CrossRef]
  40. S. Guo, S. Albin, and R. S. Rogowski, “Comparative analysis of Bragg fibers,”,Opt. Express 12,198–207 (2004). [CrossRef] [PubMed]
  41. K. Stoeffler, C. Dubois, A. Ajji, N. Guo, F. Boismenu, and M. Skorobogatiy, “Fabrication of all-plastic photonic bandgap Bragg fibers using rolling of PS/PMMA multilayer films,” Polym. Eng. Sci. 50, 1122–1127 (2010). [CrossRef]
  42. Y. Xu, R. K. Lee, and A. Yariv, “Asymptotic analysis of Bragg fibers,” Opt. Lett. 25, 1756–1758 (2000). [CrossRef]
  43. D. T. Zimmerman, J. D. Cardellino, K. T. Cravener, K. R. Feather, N. M. Miskovsky, and G. J. Weisel, “Microwave absorption in percolating metal-insulator composites,” Appl. Phys. Lett. 93, 214103 (2008). [CrossRef]
  44. M. Skorobogatiy, K. Saitoh, and M. Koshiba, “Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode bers. Application to the hollow-core photonic bandgap fibers,” Opt. Express 16, 14945–14953 (2008). [CrossRef] [PubMed]
  45. S. Winnerl, B. Zimmermann, F. Peter, H. Schneider, and M. Helm, “Terahertz Bessel–Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas,” Opt. Express 17, 1571–1576 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited