OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 944–948

Modulational instability of coupled nonlinear field equations for pulse propagation in a negative index material embedded into a Kerr medium

Amarendra K. Sarma and Manirupa Saha  »View Author Affiliations


JOSA B, Vol. 28, Issue 4, pp. 944-948 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000944


View Full Text Article

Enhanced HTML    Acrobat PDF (406 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have investigated the modulation instability (MI) in a negative index media (NIM) or metamaterial (MM) using a new generalized model describing the pulse propagation in a NIM embedded into a Kerr medium. We have found that one could control the gain of MI in an MM by tuning the initial electric or magnetic field amplitudes. Our model successfully recovers previously proposed models to describe pulse propagation in MMs exhibiting Kerr nonlinearity. Moreover, it contains a few additional terms connecting both the electric and magnetic field envelopes in an MM.

© 2011 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.3100) Nonlinear optics : Instabilities and chaos
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(260.2030) Physical optics : Dispersion

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 18, 2010
Revised Manuscript: February 2, 2011
Manuscript Accepted: February 14, 2011
Published: March 31, 2011

Citation
Amarendra K. Sarma and Manirupa Saha, "Modulational instability of coupled nonlinear field equations for pulse propagation in a negative index material embedded into a Kerr medium," J. Opt. Soc. Am. B 28, 944-948 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-4-944


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187(2000). [CrossRef] [PubMed]
  3. C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications(Wiley, 2006).
  4. A. Sihvola, “Metamaterials in electromagnetics,” Metamaterials 1, 2–11 (2007). [CrossRef]
  5. V. G. Veselago, “The electrodynamics of substance with simultaneously negative value of ε and μ,” Sov. Phys. Usp. 10, 509–514(1968). [CrossRef]
  6. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared-wavelengths in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004). [CrossRef] [PubMed]
  7. E. Schonbrun, M. Tinker, W. Park, and J.-B. Lee, “Negative refraction in a Si-polymer photonic crystal membrane,” IEEE Photon. Technol. Lett. 17, 1196–1198 (2005). [CrossRef]
  8. V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005). [CrossRef]
  9. S. Feng and K. Halterman, “Parametrically shielding electromagnetic fields by nonlinear metamaterials,” Phys. Rev. Lett. 100, 063901 (2008). [CrossRef] [PubMed]
  10. A. Chowdhury and J. A. Tataronis, “Long wave—short wave resonance in nonlinear negative refractive index media,” Phys. Rev. Lett. 100, 153905 (2008). [CrossRef] [PubMed]
  11. S. A. Ramakrishna and T. M. Grzegorczyk, Physics and Applications of Negative Refractive Index Materials (CRC Press, 2009).
  12. Y. M. Liu and G. Bartal, “Subwavelength discrete solitons in nonlinear metamaterials,” Phys. Rev. Lett. 99, 153901 (2007). [CrossRef] [PubMed]
  13. G. D’Aguanno, N. Mattiucci, M. Scalora, and M. J. Bloemer, “Bright and dark gap solitons in a negative index Fabry-Perot etalon,” Phys. Rev. Lett. 93, 213902–213905 (2004). [CrossRef] [PubMed]
  14. M. Scalora, D. D’Ceglia, G. D’Aguanno, N. Mattiucci, N. Akozbek, M. Centini, and M. J. Bloemer, “Gap solitons in a nonlinear quadratic negative-index cavity,” Phys. Rev. E 75, 066606 (2007). [CrossRef]
  15. M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Poliakov, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and A. M. Zheltikov, “Generalized nonlinear Schrodinger equation for dispersive susceptibility and permeability: application to negative index materials,” Phys. Rev. Lett. 95, 013902 (2005). [CrossRef] [PubMed]
  16. S. Wen, Y. Wang, W. Su, Y. Xiang, and X. Fu, “Modulation instability in nonlinear negative-index material,” Phys. Rev. E 73, 036617 (2006). [CrossRef]
  17. N. Lazarides and G. P. Tsironis, “Coupled nonlinear Schrödinger field equations for electromagnetic wave propagation in nonlinear left-handed materials,” Phys. Rev. E 71, 036614(2005). [CrossRef]
  18. S. Wen, Y. Xiang, X. Dai, Z. Tang, W. Su, and D. Fan, “Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials,” Phys. Rev. A 75, 033815 (2007). [CrossRef]
  19. N. L. Tsitsas, N. Rompotis, I. Kourakis, P. G. Kevrekidis, and D. J. Frantzeskakis, “Higher-order effects and ultrashort solitons in left-handed metamaterials,” Phys. Rev. E 79, 037601 (2009). [CrossRef]
  20. I. Kourakis and P. K. Shukla, “Nonlinear propagation of electromagnetic waves in negative-refraction-index composite materials,” Phys. Rev. E 72, 016626 (2005). [CrossRef]
  21. P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A 81, 013819 (2010). [CrossRef]
  22. P. Kinsler, “Unidirectional optical pulse propagation equation for materials with both electric and magnetic responses,” Phys. Rev. A 81, 023808 (2010). [CrossRef]
  23. G. D’Aguanno, N. Akozbek, N. Mattiucci, M. Scalora, M. J. Bloemer, and A. M. Zheltikov, “Dispersion-free pulse propagation in a negative-index material,” Opt. Lett. 30, 1998–2000(2005). [CrossRef] [PubMed]
  24. M. Stockman, “Criteria for negative refraction with low optical losses from a fundamental principle of causality,” Phys. Rev. Lett. 98, 177404 (2007). [CrossRef]
  25. S. Wen, Y. Xiang, W. Su, Y. Hu, X. Fu, and D. Fan, “Role of the anomalous self-steepening effect in modulation instability in negative-index material,” Opt. Express 14, 1568–1575(2006). [CrossRef] [PubMed]
  26. X. Dai, Y. Xiang, S. Wen, and D. Fan, “Modulation instability of copropagating light beams in nonlinear metamaterials,” J. Opt. Soc. Am. B 26, 564–571 (2009). [CrossRef]
  27. A. K. Sarma, “Modulational instability of few-cycle pulses in optical fibers,” Europhys. Lett. 92, 24004 (2010). [CrossRef]
  28. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited