OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 1019–1025

Complex dispersion relation of a double chain of lossy metal nanoparticles

Massimiliano Guasoni and Matteo Conforti  »View Author Affiliations


JOSA B, Vol. 28, Issue 5, pp. 1019-1025 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001019


View Full Text Article

Enhanced HTML    Acrobat PDF (625 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the propagation characteristics of optical signals in waveguides composed of a double chain of metallic nanoparticles embedded in a dielectric host. We find that the complex Bloch band diagram for the guided modes, derived by the Mie scattering theory including material losses, exhibits strong differences with respect to the previously studied single chain. The results of the model are validated through the finite element solution of the Maxwell equations.

© 2011 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(260.2030) Physical optics : Dispersion
(260.3910) Physical optics : Metal optics

ToC Category:
Scattering

History
Original Manuscript: October 25, 2010
Revised Manuscript: February 4, 2011
Manuscript Accepted: February 10, 2011
Published: April 11, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Massimiliano Guasoni and Matteo Conforti, "Complex dispersion relation of a double chain of lossy metal nanoparticles," J. Opt. Soc. Am. B 28, 1019-1025 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-5-1019


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef] [PubMed]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969). [CrossRef]
  4. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  5. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008). [CrossRef] [PubMed]
  6. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31, 3447–3449 (2006). [CrossRef] [PubMed]
  7. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998). [CrossRef]
  8. M. L. Brongesma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356(2000). [CrossRef]
  9. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003). [CrossRef]
  10. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004). [CrossRef]
  11. D. S. Citrin, “Coherent excitation transport in metal-nanoparticle chains,” Nano Lett. 4, 1561–1565 (2004). [CrossRef]
  12. R. A. Shore and A. D. Yaghjian, “Travelling electromagnetic waves on linear periodic arrays of lossless spheres,” Electron. Lett. 41, 578–580 (2005). [CrossRef]
  13. C. R. Simovsky, A. J. Viitanen, and S. A. Tretyakov, “Resonator mode in chains of silver nanoparticles and its possible application,” Phys. Rev. E 72, 066606 (2005). [CrossRef]
  14. D. S. Citrin, “Plasmon-polariton transport in metal-nanoparticle chains embedded in a gain medium,” Opt. Lett. 31, 98–100(2006). [CrossRef] [PubMed]
  15. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006). [CrossRef]
  16. A. Alú and N. Engheta, “Theory of linear chains of metamaterial/plasmonic nanoparticles as a subdiffraction optical nanotransmission lines,” Phys. Rev. B 74, 205436 (2006). [CrossRef]
  17. V. A. Markel and A. K. Sarychev, “Propagation of surface plasmons in ordered and disordered chains of nanoparticles,” Phys. Rev. B 75, 085426 (2007). [CrossRef]
  18. A. A. Govyadinov and V. A. Markel, “From slow to superluminal propagation: dispersive properties of surface plasmon polaritons in linear chains of metallic nanospheroids,” Phys. Rev. B 78, 035403 (2008). [CrossRef]
  19. M. Conforti and M. Guasoni, “Dispersive properties of linear chains of lossy metal nanoparticles,” J. Opt. Soc. Am. B 27, 1576–1582 (2010). [CrossRef]
  20. H. Chu, W. Ewe, E. Li, and R. Vahldieck, “Analysis of sub-wavelength light propagation through long double-chain nanowires with funnel feeding,” Opt. Express 15, 4216–4223(2007). [CrossRef] [PubMed]
  21. A. Alú, P. A. Belov, and N. Engehta, “Parallel-chain optical transmission line for a low-loss ultraconfined light beam,” Phys. Rev. B 80, 113101 (2009). [CrossRef]
  22. J. M. Gerardy and M. Ausloos, “Absorption spectrum of spheres from the general solution of Maxwell’s equations. II. optical properties of aggregated metal spheres,” Phys. Rev. B 25, 4204–4229 (1982). [CrossRef]
  23. Y.-l. Xu, “Fast evaluation of the Gaunt coefficients,” Math. Comput. 65, 1601–1612 (1996). [CrossRef]
  24. A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions (Krieger, 1981), Vol.  1.
  25. F. Xu, K. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007). [CrossRef]
  26. S. Asano and G. Yamamoto, “Light scattering by a spheroidal particle,” Appl. Opt. 14, 29–49 (1975). [CrossRef] [PubMed]
  27. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited