OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 1026–1036

Power and tuning characteristics of a broadly tunable femtosecond optical parametric oscillator based on periodically poled stoichiometric lithium tantalate

Joseph D. Rowley, Shan Yang, and Feruz Ganikhanov  »View Author Affiliations


JOSA B, Vol. 28, Issue 5, pp. 1026-1036 (2011)
http://dx.doi.org/10.1364/JOSAB.28.001026


View Full Text Article

Enhanced HTML    Acrobat PDF (1492 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on power, tuning, and temporal characteristics of an optical parametric oscillator (OPO) based on a periodically poled stoichiometric lithium tantalate (PPSLT) crystal and pumped by a high-power mode-locked Ti:sapphire laser. Focus is given to the OPO operating range spanning from 900 to 1350 nm , which is important in nonlinear optical microscopy and spectroscopy. Generation of peak powers beyond the 10 kW level is strongly affected by the onset of intracavity power-dependent loss, which is due to the high ultrafast Kerr nonlinearity of the gain material. The crystal withstands combined power densities higher than 60 GW / cm 2 for 100 fs optical pulses before breakdown occurs. A resonator design that mitigates self- and cross-beam focusing effects delivers 40 kW peak power for 85 160 fs pulses. The high parametric gain of the PPSLT allows OPO operation at the twelfth harmonic of the pump laser repetition rate ( 0.91 GHz ). Stable operation with the possibility of broad wavelength tuning is demonstrated without active cavity length stabilization at a repetition rate of 530 MHz and average powers above 150 mW . In addition, up to 50 mW of power at 530 nm is output as a result of SHG of the 1060 nm signal beam resulting from third-order quasi phase matching.

© 2011 Optical Society of America

OCIS Codes
(320.7090) Ultrafast optics : Ultrafast lasers
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Ultrafast Optics

History
Original Manuscript: January 4, 2011
Revised Manuscript: March 3, 2011
Manuscript Accepted: March 4, 2011
Published: April 11, 2011

Virtual Issues
Vol. 6, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Joseph D. Rowley, Shan Yang, and Feruz Ganikhanov, "Power and tuning characteristics of a broadly tunable femtosecond optical parametric oscillator based on periodically poled stoichiometric lithium tantalate," J. Opt. Soc. Am. B 28, 1026-1036 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-5-1026


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31, 1292–1294 (2006). [CrossRef] [PubMed]
  2. M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, “Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Phys. Lett. 89, 251116(2006). [CrossRef]
  3. J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H. Fuchs, E. Kley, H. Zellmer, and A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,” Opt. Express 10, 628–638 (2002). [PubMed]
  4. C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. C. Wong, and G. S. Young, “Chemically-selective imaging of brain structures with CARS microscopy,” Opt. Express 15, 12076 (2007). [CrossRef] [PubMed]
  5. D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Meth. 3, 47–53 (2006). [CrossRef]
  6. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17, 13354–13364(2009). [CrossRef] [PubMed]
  7. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002). [CrossRef]
  8. M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103, 043905 (2009). [CrossRef] [PubMed]
  9. A. Nikolaenko, V. Krishnamachari, and E. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Phys. Rev. A 79, 013823 (2009). [CrossRef]
  10. D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728–1730 (1989). [CrossRef]
  11. S. Lecomte, R. Paschotta, S. Pawlik, B. Schmidt, K. Furusawa, A. N. Malinowski, D. J. Richardson, and U. Keller, “Optical parametric oscillator with a pulse repetition rate of 39 GHz and 2.1 W signal average output power in the spectral region near 1.5 μm,” Opt. Lett. 30, 290–292 (2005). [CrossRef] [PubMed]
  12. T. Südmeyer, J. A. der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Femtosecond fiber-feedback optical parametric oscillator,” Opt. Lett. 26, 304–306 (2001). [CrossRef]
  13. R. Das, S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “Broadband, high-power, continuous-wave, mid-infrared source using extended phase-matching bandwidth in MgO:PPLN,” Opt. Lett. 34, 3836–3838 (2009). [CrossRef] [PubMed]
  14. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995). [CrossRef]
  15. V. Y. Shur, E. B. Blankova, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, A. V. Barannikov, R. K. Route, M. M. Fejer, and R. L. Byer, “X-ray-induced phase transformation in congruent and vapor-transport-equilibrated lithium tantalite and lithium niobate,” Appl. Phys. Lett. 80, 1037–1039 (2002). [CrossRef]
  16. U. Strössner, A. Peters, J. Mlynek, S. Schiller, J.-P. Meyn, and R. Wallenstein, “Single-frequency continuous-wave radiation from 0.77 to 1.73 μm generated by a green-pumped optical parametric oscillator with periodically poled LiTaO3,” Opt. Lett. 24, 1602–1604 (1999). [CrossRef]
  17. G. K. Samanta, G. R. Fayaz, and M. Ebrahim-Zadeh, “1.59 W, single-frequency, continuous-wave optical parametric oscillator based on MgO:sPPLT,” Opt. Lett. 32, 2623–2625 (2007). [CrossRef] [PubMed]
  18. S. Tu, A. H. Kung, Z. D. Gao, and S. N. Zhu, “Efficient periodically poled stoichiometric lithium tantalate optical parametric oscillator for the visible to near-infrared region,” Opt. Lett. 30, 2451–2453 (2005). [CrossRef] [PubMed]
  19. T. Südmeyer, E. Innerhofer, F. Brunner, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, D. C. Hanna, and U. Keller, “High-power femtosecond fiber-feedback optical parametric oscillator based on periodically poled stoichiometric LiTaO3,” Opt. Lett. 29, 1111–1113 (2004). [CrossRef] [PubMed]
  20. K. V. Bhupathiraju, A. D. Seymour, and F. Ganikhanov, “Femtosecond optical parametric oscillator based on periodically poled stoichiometric LiTaO3 crystal,” Opt. Lett. 34, 2093–2095 (2009). [CrossRef] [PubMed]
  21. A. Bruner, D. Eger, M. B. Oron, P. Blau, and M. Katz, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28, 194–196(2003). [CrossRef] [PubMed]
  22. M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, and K. Kitamura, “Optical-damage-free guided second-harmonic generation in 1% MgO-doped stoichiometric lithium tantalate,” Opt. Lett. 31, 83–85 (2006). [CrossRef] [PubMed]
  23. T. W. Tukker, C. Otto, and J. Greve, “Design, optimization, and characterization of a narrow-bandwidth optical parametric oscillator,” J. Opt. Soc. Am. B 16, 90–95 (1999). [CrossRef]
  24. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639(1968). [CrossRef]
  25. A. Galvanauskas, A. Hariharan, D. Harter, M. A. Arbore, and M. M. Fejer, “High-energy femtosecond pulse amplification in a quasi-phase-matched parametric amplifier,” Opt. Lett. 23, 210–212 (1998). [CrossRef]
  26. E. C. Cheung and J. M. Liu, “Theory of a synchronously pumped optical parametric oscillator in steady-state operation,” J. Opt. Soc. Am. B 7, 1385–1401 (1990). [CrossRef]
  27. S. Akhmanov, A. Chirkin, K. DrabovichA. Kovrigin, R. Khokhlov, and A. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598–605 (1968). [CrossRef]
  28. J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, “Pulse compression in a synchronously pumped optical parametric oscillator from group-velocity mismatch,” Opt. Lett. 19, 831–833(1994). [CrossRef] [PubMed]
  29. W. S. Pelouch, P. E. Powers, and C. L. Tang, “Ti:sapphire-pumped, high-repetition-rate femtosecond optical parametric oscillator” Opt. Lett. 17, 1070–1072 (1992). [CrossRef] [PubMed]
  30. S. F. Fulghum and M. M. Tilleman, “Interferometric calorimeter for the measurement of water-vapor absorption,” J. Opt. Soc. Am. B 8, 2401–2413 (1991). [CrossRef]
  31. H. T. Hsieh, D. Psaltis, O. Beyer, D. Maxein, C. von Korff Schmising, K. Buse, and B. Sturman, “Femtosecond holography in lithium niobate crystals,” Opt. Lett. 30, 2233–2235 (2005). [CrossRef] [PubMed]
  32. A. Esteban-Martin, O. Kokabee, K. Moutzouris, and M. Ebrahim-Zadeh, “High-harmonic-repetition-rate, 1 GHz femtosecond optical parametric oscillator pumped by a 76 MHz Ti:sapphire laser,” Opt. Lett. 34, 428–430 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited