OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 1043–1050

Development of real-time vibrational spectroscopy of molecules in electronic excited states: toward mapping molecular potential energy hypersurfaces

Takahiro Teramoto, Juan Du, Zhuan Wang, Jun Liu, Eiji Tokunaga, and Takayoshi Kobayashi  »View Author Affiliations

JOSA B, Vol. 28, Issue 5, pp. 1043-1050 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (841 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have developed an experimental system for real-time vibrational spectroscopy of molecules in a specific electronic excited state. A synchronized UV light source and a few-cycle visible laser pulse were utilized to prepare and investigate the ultrafast dynamics of molecules in the electronic excited states. A multichannel lock-in amplifier detection system operating in a tandem double lock-in detection mode was used to extract the signal correlated only to the UV and visible pump pulses. Real-time vibrational spectroscopy of chrysene in the triplet state and 1 , 3 -dihydro- 1 , 3 , 3 -trimethyl-6-nitrospiro [2H-1-benzopyran-2, 2 -(2H)-indole] in a photochromic state was demonstrated.

© 2011 Optical Society of America

OCIS Codes
(300.6250) Spectroscopy : Spectroscopy, condensed matter
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(320.7150) Ultrafast optics : Ultrafast spectroscopy

ToC Category:
Ultrafast Optics

Original Manuscript: December 20, 2010
Revised Manuscript: February 28, 2011
Manuscript Accepted: February 28, 2011
Published: April 12, 2011

Takahiro Teramoto, Juan Du, Zhuan Wang, Jun Liu, Eiji Tokunaga, and Takayoshi Kobayashi, "Development of real-time vibrational spectroscopy of molecules in electronic excited states: toward mapping molecular potential energy hypersurfaces," J. Opt. Soc. Am. B 28, 1043-1050 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 1984).
  2. J. Chesnoy and A. Mokhtari, “Resonant impulsive-stimulated Raman scattering on malachite green,” Phys. Rev. A 38, 3566–3576 (1988). [CrossRef] [PubMed]
  3. L. Dhar, J. A. Rogers, and K. A. Nelson, “Time-resolved vibrational spectroscopy in the impulsive limit,” Chem. Rev. 94, 157–193 (1994). [CrossRef]
  4. D. M. Jonas, S. E. Bradforth, S. A. Passino, and G. R. Fleming, “Femtosecond wavepacket spectroscopy: influence of temperature, wavelength, and pulse duration,” J. Phys. Chem. 99, 2594–2608 (1995). [CrossRef]
  5. S. Mukamel, Principles of Nonlinear Optical Spectroscopy(Oxford University Press, 1995).
  6. L. Zhu, A. Widom, and P. M. Champion, “A multidimensional Landau–Zener description of chemical reaction dynamics and vibrational coherence,” J. Chem. Phys. 107, 2859–2871 (1997). [CrossRef]
  7. W. T. Pollard, S. L. Dexheimer, Q. Wang, L. A. Peteanu, C. V. Shank, and R. A. Mathies, “Theory of dynamic absorption spectroscopy of nonstationary states. 4. application to 12 fs resonant impulsive Raman spectroscopy of bacteriorhodopsin,” J. Phys. Chem. 96, 6147–6158 (1997). [CrossRef]
  8. S. Lochbrunner, A. J. Wurzer, and E. Riedle, “Ultrafast excited-state proton transfer and subsequent coherent skeletal motion of 2-(2′-hydroxyphenyl) benzothiazole,” J. Chem. Phys. 112, 10699–10702 (2000). [CrossRef]
  9. A. T. N. Kumar, F. Rosca, A. Widom, and P. M. Champion, “Investigations of ultrafast nuclear response induced by resonant and nonresonant laser pulses,” J. Chem. Phys. 114, 701–724(2001). [CrossRef]
  10. A. T. N. Kumar, F. Rosca, A. Widom, and P. M. Champion, “Investigations of ultrafast nuclear response induced by resonant and nonresonant laser pulses,” J. Chem. Phys. 114, 6795–6815(2001). [CrossRef]
  11. S. Adachi, V. M. Kobryanskii, and T. Kobayashi, “Excitation of a breather mode of bound soliton pairs in polymers with degenerate ground state by sub-5 fs optical pulses,” Phys. Rev. Lett. 89, 027401 (2002). [CrossRef] [PubMed]
  12. K. Heyne, N. Huse, J. Dreyer, E. T. J. Nibbering, and T. Elsaesser, “Coherent low-frequency motions of hydrogen bonded acetic acid dimers in the liquid phase,” J. Chem. Phys. 121, 902–913(2004). [CrossRef] [PubMed]
  13. P. M. Champion, F. Rosca, D. Ionascu, W. Cao, and X. Ye, “Rapid timescale processes and the role of electronic surface coupling in the photolysis of diatomic ligands from heme proteins,” Faraday Disc. 127, 123–135 (2004). [CrossRef]
  14. J. R. Dwyer, J. Dreyer, E. T. J. Nibbering, and T. Elsaesser, “Ultrafast dynamics of vibrational N–H stretching excitations in the 7-azaindole dimer,” Chem. Phys. Lett. 432, 146–151 (2006). [CrossRef]
  15. T. Elsaesser, N. Huse, J. Dreyer, J. R. Dwyer, K. Heyne, and E. T. J. Nibbering, “Ultrafast vibrational dynamics and anharmonic couplings of hydrogen-bonded dimers in solution,” Chem. Phys. 341, 175–188 (2007). [CrossRef]
  16. T. Kobayashi, Y. Wang, Z. Wang, and I. Iwakura, “Circa conservation of vibrational energy among three strongly coupled modes of a cyanine dye molecule studied by quantum-beat spectroscopy with a 7 fs laser,” Chem. Phys. Lett. 466, 50–55 (2008). [CrossRef]
  17. T. Kobayashi, J. Du, W. Feng, and K. Yoshino, “Excited-state molecular vibration observed for a probe pulse preceding the pump pulse by real-time optical spectroscopy,” Phys. Rev. Lett. 101, 037402 (2008). [CrossRef] [PubMed]
  18. T. Kobayashi, Z. Wang, and I. Iwakura, “The relation between the symmetry of vibrational modes and the potential curve displacement associated with electronic transition studied by using real-time vibrational spectroscopy,” New J. Phys. 10, 065009(2008). [CrossRef]
  19. T. Kobayashi and Z. Wang, “Correlations of instantaneous transition energy and intensity of absorption peaks during molecular vibration: toward potential hyper-surface,” New J. Phys. 10, 065015 (2008). [CrossRef]
  20. T. Kobayashi and Z. Wang, “Spectral oscillation in optical frequency-resolved quantum-beat spectroscopy with a few-cycle pulse laser,” IEEE J. Quantum Electron. 44, 1232–1241 (2008). [CrossRef]
  21. I. Iwakura, A. Yabushita, and T. Kobayashi, “Direct observation of molecular structural change during intersystem crossing by real-time spectroscopy with a few optical cycle laser,” Inorg. Chem. 48, 3523–3528 (2009). [CrossRef] [PubMed]
  22. I. Iwakura, A. Yabushita, and T. Kobayashi, “Why is indigo photostable over extremely long periods?” Chem. Lett. 38, 1020–1021 (2009). [CrossRef]
  23. T. Kobayashi, J. Zhang, and Z. Wang, “Non-Condon vibronic coupling of coherent molecular vibration in MEH-PPV induced by a visible few-cycle pulse laser,” New J. Phys. 11, 013048 (2009). [CrossRef]
  24. T. Teramoto, Z. Wang, V. M. Kobryanskii, T. Taneichi, and T. Kobayashi, “Ultrafast real-time vibronic coupling of a breather soliton in trans-polyacetylene using a laser pulse with few cycles,” Phys. Rev. B 79, 033202 (2009). [CrossRef]
  25. I. Iwakura, A. Yabushita, and T. Kobayashi, “Kinetic isotope effect on the proton-transfer in indigo carmine,” Chem. Phys. Lett. 484, 354–357 (2010). [CrossRef]
  26. I. Iwakura, A. Yabushita, and T. Kobayashi, “Observation of transition state in Raman triggered oxidation of chloroform in the ground state by real-time vibrational spectroscopy,” Chem. Phys. Lett. 457, 421–426 (2008). [CrossRef]
  27. T. Teramoto and T. Kobayashi, “Multiple mode coupling in Cy3 molecules by impulsive coherent vibrational spectroscopy using a few-cycle laser pulse,” Phys. Chem. Chem. Phys. 12, 13515–13518 (2010). [CrossRef] [PubMed]
  28. Y. Wang and T. Kobayashi, “Electronic and vibrational coherence dynamics in a cyanine dye studied using a few cycles pulsed laser,” Chem. Phys. Chem. 11, 889–896 (2010). [CrossRef] [PubMed]
  29. T. Kobayashi, J. Du, W. Feng, K. Yoshino, S. Tretiak, A. Saxena, and Alan R. Bishop, “Observation of breather excitons and soliton in a substituted polythiophene with a degenerate ground state,” Phys. Rev. B 81, 075205 (2010). [CrossRef]
  30. C. Gadermaier, A. S. Alexandrov, V. V. Kabanov, P. Kusar, T. Mertelj, X. Yao, C. Manzoni, D. Brida, G. Cerullo, and D. Mihailovic, “Electron-phonon coupling in high-temperature cuprate superconductors determined from electron relaxation rates,” Phys. Rev. Lett. 105, 257001 (2010). [CrossRef]
  31. T. Virgili, L. Lüer, G. Cerullo, G. Lanzani, S. Stagira, D. Coles, A. J. H. M. Meijer, and D. G. Lidzey, “Role of intramolecular dynamics on intermolecular coupling in cyanine dye,” Phys. Rev. B. 81, 125317 (2010). [CrossRef]
  32. M. Yoshizawa, Y. Hattori, and T. Kobayashi, “Femtosecond time-resolved resonance Raman gain spectroscopy in polydiacetylene,” Phys. Rev. B 49, 13259–13262 (1994). [CrossRef]
  33. M. Yoshizawa and M. Kurosawa, “Femtosecond time-resolved Raman spectroscopy using stimulated Raman scattering,” Phys. Rev. A 61, 013808 (1999). [CrossRef]
  34. C. Fang, R. R. Frontiera, R. Tran, and R. A. Mathies, “Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy,” Nature 462, 200–205 (2009). [CrossRef] [PubMed]
  35. D. S. Larsen, E. Papagiannakis, I. H. M. van Stokkum, M. Vengris, J. T. M. Kennis, and R. van Grondelle, “Excited state dynamics of beta-carotene explored with dispersed multi-pulse transient absorption,” Chem. Phys. Lett. 381, 733–742 (2003). [CrossRef]
  36. S. Takeuchi, S. Ruhman, T. Tsuneda, M. Chiba, T. Taketsugu, and T. Tahara, “Spectroscopic tracking of structural evolution in ultrafast stilbene photoisomerization,” Science 322, 1073–1077 (2008). [CrossRef] [PubMed]
  37. W. D. Tian, J. T. Sage, V. Srajer, and P. M. Champion, “Relaxation dynamics of myoglobin in solution,” Phys. Rev. Lett. 68, 408–411 (1992). [CrossRef] [PubMed]
  38. A. Yu, X. Ye, D. Ionascu, W. Cao, and P. M. Champion, “Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range,” Rev. Sci. Instrum. 76, 114301 (2005). [CrossRef]
  39. E. C. Carroll, M. P. Hill, D. Madsen, K. R. Malley, and D. S. Larsen, “A single source femtosecond–millisecond broadband spectrometer,” Rev. Sci. Instrum. 80, 026102 (2009). [CrossRef] [PubMed]
  40. N. Ishii, E. Tokunaga, S. Adachi, T. Kimura, H. Matsuda, and T. Kobayashi, “Optical frequency- and vibrational time-resolved two-dimensional spectroscopy by real-time impulsive resonant coherent Raman scattering in polydiacetylene,” Phys. Rev. A 70, 023811 (2004). [CrossRef]
  41. U. Megerle, I. Pugliesi, C. Schriever, C. F. Sailer, and E. Riedle, “Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground,” Appl. Phys. B 96, 215–231 (2009). [CrossRef]
  42. D. Polli, L. Lüer, and G. Cerullo, “High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics,” Rev. Sci. Instrum. 78, 103108(2007). [CrossRef] [PubMed]
  43. K. E. H. Anderson, S. L. Sewall, R. R. Cooney, and P. Kambhamptati, “Noise analysis and noise reduction methods in kilohertz pump-probe experiments,” Rev. Sci. Instrum. 78, 073101 (2007). [CrossRef] [PubMed]
  44. J. Goree, “Double lock‐in detection for recovering weak coherent radio frequency signals,” Rev. Sci. Instrum. 56, 1662–1664(1985). [CrossRef]
  45. S. Iwai, M. Tanaka, M. Mitsunaga, T. Kobayashi, and E. Tokunaga, “Excited-state absorption spectra for optically forbidden f–f transitions in an Eu3+:Y2SiO5 crystal and Eu3+ aqueous solution,” J. Opt. Soc. Am. B 25, 1046–1050 (2008). [CrossRef]
  46. A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for sub-10 fs pulse generation tunable in the visible and near infrared,” Opt. Lett. 23, 1292–1294 (1998). [CrossRef]
  47. A. Baltuska, T. Fuji, and T. Kobayashi, “Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control,” Opt. Lett. 27, 306–308 (2002). [CrossRef]
  48. The double-laser systems were composed of a femtosecond regenerative amplifier system (Legend-USP, Coherent, Inc.) and a picosecond regenerative amplifier system (Legend-P, Coherent, Inc.). The timing firing the Q switch and SDG was tuned by the digital delay generator (DG535, Stanford Research). The timing signal was detected by the FPD-510-FV (Menlo Systems, Inc.) The feedback stage (FS-1020X, Sigma Tech, Inc.) was used to tune the pump’s optical delay. The modulation for the probe pulse was created by the chopper (Model 3501, New Focus, Inc.) and shutter (SH05, Thorlabs, Inc.). The MLA system was composed of fibers (FiberTech Optica, Inc.), a polychromator (SpectraPro2300i, Acton Research, Inc.), APDs (S5343, Hamamatsu Photonics, Inc.), preamplifier (7210/90, Signal Recovery, Inc.), and an MLA (7210, Signal Recovery, Inc.). The resistor tunable low-pass filter kit was used to reduce the unwanted higher frequency components of the signal (SR-4FL2, NF Corporation, Inc.).
  49. M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97, 561–574 (2009). [CrossRef]
  50. V. Volkov, R. Schanz, and P. Hamm, “Active phase stabilization in Fourier-transform two-dimensional infrared spectroscopy,” Opt. Lett. 30, 2010–2012 (2005). [CrossRef] [PubMed]
  51. S. Koshihara and T. Kobayashi, “Time-resolved resonance Raman spectrum of chrysene in the S1 and T1 states,” J. Chem. Phys. 85, 1211–1219 (1986). [CrossRef]
  52. S. Koshihara, T. Kobayashi, and S. Iwashima, “Sn←S1 and Tn←T1 absorption spectra of highly purified chrysene in solution,” Chem. Phys. Lett. 124, 331–335 (1986). [CrossRef]
  53. X. Cai, M. Hara, K. Kawai, S. Tojo, and T. Majima, “Properties of chrysene in the higher triplet excited state,” Chem. Phys. Lett. 368, 365–369 (2003). [CrossRef]
  54. G. H. Brown, Photochromism (Wiley-Interscience, 1971).
  55. M. Irie, “Diarylethenes for memories and switches,” Chem. Rev. 100, 1685–1716 (2000). [CrossRef]
  56. G. Berkovic, V. Krongauz, and V. Weiss, “Spiropyrans and spirooxazines for memories and switches,” Chem. Rev. 100, 1741–1753 (2000). [CrossRef]
  57. S. Kawata and Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100, 1777–1788(2000). [CrossRef]
  58. Y. Futami, M. Lim, S. Chin, S. Kudoh, M. Takayanagi, and M. Nakata, “Conformations of nitro-substituted spiropyran and merocyanine studied by low-temperature matrix-isolation infrared spectroscopy and density-functional-theory calculation,” Chem. Phys. Lett. 370, 460–468 (2003). [CrossRef]
  59. C. J. Wohl and D. Kuciauskas, “Excited-state dynamics of spiropyran-derived merocyanine isomers,” J. Phys. Chem. B 109, 22186–22191 (2005). [CrossRef]
  60. S. Kajimoto, A. Mori, and H. Fukumura, “Photo-controlled phase separation and mixing of a mixture of water and 2-butoxyethanol caused by photochromic isomerisation of spiropyran,” Photochem. Photobiol. Sci. 9, 208–210 (2010). [CrossRef] [PubMed]
  61. S. Tretiak, A. Piryatinski, A. Saxena, R. L. Martin, and A. R. Bishop, “On the existence of photoexcited breathers in conducting polymers,” Phys. Rev. B 70, 233203(2004). [CrossRef]
  62. S. Tretiak, A. Saxena, R. L. Martin, and A. R. Bishop, “Photoexcited breathers in conjugated polyenes: an excited-state molecular dynamics study,” Proc. Natl. Acad. Sci. USA 100, 2185–2190 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited